NEET Physics Mechanical Properties Of Solids Notes

Mechanical Properties Of Solids

Restoring force per unit area is known as stress.

Stress = \(\frac{\mathrm{F}}{\mathrm{A}}\)

Its S.I. unit is Nm 2 or pascal(Pa)

Strain is defined as change in configuration of the body to the original configuration

Longitudinal strain = \(\frac{\text { Change in length }}{\text { original length }}=\frac{\Delta \ell}{\mathrm{L}}\)

Volume strain = \(\frac{\text { Change in volume }}{\text { original volume }}=\frac{\Delta \mathrm{V}}{\mathrm{V}}\)

Shear strain = the angle by which a line perpendicular to the fixed face turns.

Read And Learn More: NEET Physics Notes

Hooke’s Law

Within elastic limit, stress is directly proportional to strain.

i.e., Stress ∝ Strain

Stress = K Strain

Where,

K=  \(\frac{\text { Stress }}{\text { Strain }}\) is called modulus of elasticity.

Stress-Strain Curve

NEET Physics Mechanical Properties Of Solids Strain Curve

Young’s Modulus

\(\mathrm{Y}=\frac{\text { Normal stress }}{\text { longitudinal strain }}=\frac{\mathrm{FL}}{\mathrm{A} \Delta I}\) If length of the wire is doubled, then strain = 1

∴ Y = Stress

Bulk Modulus

⇒ \(B=\frac{\text { Normal stress }}{\text { Volume strain }}=\frac{\frac{F}{A}}{-\frac{\Delta V}{V}}\)

⇒ \(\mathrm{B}=-\frac{\mathrm{PV}}{\Delta \mathrm{V}}\)

The reciprocal of Bulk modulus is called compressibility.

Compressibility, K = \(\frac{1}{B}\)

Modulus of rigidity (G):

NEET Physics Mechanical Properties Of Solids Modulus Of Rigidity

⇒ \(\mathrm{G}=\frac{\text { Shearing stress }}{\text { Shearing strain }}\)

⇒ \(\mathrm{G}=\frac{\mathrm{FL}}{\mathrm{A} \Delta \mathrm{x}}=\frac{\mathrm{F}}{\mathrm{A} \tan \theta}=\frac{\mathrm{F}}{\mathrm{A} \theta}\)

Poisson’s ratio:

⇒ \(\sigma=\frac{\text { Lateral strain }}{\text { Longitudinal strain }}\)

⇒ \(\sigma=-\frac{\frac{\Delta \mathrm{D}}{\mathrm{D}}}{\frac{\Delta \mathrm{L}}{\mathrm{L}}}\)

Where ‘D’ is diameter of the rod.

Maximum length of the wire that can be hung from the ceiling without breaking

Breaking stress =\(\frac{\text { Breaking force }}{\text { area of cross-section }}\)

⇒ \(\mathrm{S}=\frac{\mathrm{F}}{\mathrm{A}}-\frac{\mathrm{mg}}{\mathrm{A}}=\frac{\rho \vee \mathrm{g}}{\mathrm{A}}=\frac{\rho(\mathrm{A} l) \mathrm{g}}{\mathrm{A}}\)

⇒ \(\mathrm{S}-\rho l \mathrm{~g}\)

⇒ \(l=\frac{s}{\rho g}\)

Maximum height of a mountain on earth is given by,

⇒ \(\mathrm{h}_{\max }=\frac{\mathrm{K}}{\rho \mathrm{g}}\)

Where K is the elastic limit of the earth supporting material

Depression produced in a rectangular beam is given by,

NEET Physics Mechanical Properties Of Solids Rectangular Beam

⇒ \(\delta-\frac{\mathrm{w} l^3}{4 \mathrm{Ybd} \mathrm{d}^3}\)

Where, l is length of the beam, Y is the Young’s modulus of the material of the beam, b is the breadth and d is the depth of the beam.

Work done in stretching a wire is given by,

⇒ \(\mathrm{W}=\frac{1}{2} \mathrm{~F} \Delta l\)

∴ Potential energy stored in a stretched wire is given by

⇒ \(\mathrm{U}=\frac{1}{2} \mathrm{~F} \Delta l\)

Where Δl is the increase in length.

∴ Potential energy per unit volume is given by,

⇒ \(\mathrm{u}=\frac{\mathrm{U}}{\mathrm{v}}-\frac{1}{2} \frac{\mathrm{F} \Delta l}{\mathrm{~A} l}\)

⇒ \(\mathrm{u}=\frac{1}{2} \text { (stress) (strain) }\)

⇒ \(\mathrm{u}=\frac{1}{2} \times \mathrm{Y} \times(\text { strain })^2\)

Leave a Comment