WBBSE Class 10 Maths Solutions Chapter 23 Trigonometric Ratios And Trigonometric Identities Exercise 23.3
Question 1. If sinθ = then let us write the value of cosec/1+cotθ by determining it.
Solution : sinθ =4/5
∴ cosecθ =1/sinθ
=5/4
cot2θ = cosec2θ – 1 = (5/4)²-1
= 25/16-1
= 25-16 / 16
= 9/16
∴ cosθ= √9/16
= 3/4
Now, cosecθ / 1+cotθ = 5/4 / 1+3/4
= 5/4 x 4/7
= 5/7
Read and Learn More WBBSE Solutions For Class 10 Maths
Question 2. If tanθ = 3/4, then let us show that √(1-sinθ/1+sinθ) = 1/2
Solution: tanθ = 3/4
let AB =3K
& BC = 4K
∴ AC² = AB²+BC²
= (3K)²+(4K)² = 9K²+16K²
= 25K²
.. AC = √25K²
= 5K
∴ sinθ = AB/AC = 3K/5K = 3/5
Now L.H.S = \(\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\sqrt{\frac{1-3 / 5}{1+3 / 5}}=\sqrt{\frac{\frac{5-3}{5}}{\frac{5+3}{5}}}=\sqrt{\frac{2}{8}}=\sqrt{\frac{1}{4}}\)
= 1/2 = R.H.S Proved
Question 3. If tanθ = 1, then let us determine the value of 8sinθ+5cosθ/sin³ θ-2cos³θ+7 cosθ
Solution: tanθ = 1
We know, \(\tan \theta=\frac{P}{B}=\frac{A B}{B C}\)
∴ \(\mathrm{AC}^2=\mathrm{AB}^2+\mathrm{BC}^2\)
= \((1 K)^2+(1 K)^2=K^2+K^2=2 K^2\)
∴ \(\mathrm{AC}^2=\mathrm{AB}^2+\mathrm{BC}^2\)
= \((1 K)^2+(1 K)^2=K^2+K^2=2 K^2\)
∴ \(A C=\sqrt{2 K^2}=K \sqrt{2}\)
∴ \(\sin \theta=\frac{P}{H}=\frac{A B}{A C}=\frac{1 K}{\sqrt{2} K}=\frac{1}{\sqrt{2}}\)
& \(\cos \theta=\frac{B}{H}=\frac{B C}{A C}=\frac{1 K}{\sqrt{2} K}=\frac{1}{\sqrt{2}}\)
Now, \(\frac{8 \sin \theta+5 \cos \theta}{\sin ^3 \theta-2 \cos ^3 \theta+7 \cos \theta}\)
= \(\frac{8 \times \frac{1}{\sqrt{2}}+5 \times \frac{1}{\sqrt{2}}}{\left(\frac{1}{\sqrt{2}}\right)^3-2\left(\frac{1}{\sqrt{2}}\right)^3+7 \cdot \frac{1}{\sqrt{2}}}=\frac{\frac{8}{\sqrt{2}}+\frac{5}{\sqrt{2}}}{\frac{1}{2 \sqrt{2}}-2 \frac{1}{2 \sqrt{2}}+\frac{7}{\sqrt{2}}}=\frac{\frac{13}{\sqrt{2}}}{\frac{1-2+14}{2 \sqrt{2}}}\)
= \(\frac{13 / \sqrt{2}}{13 / 2 \sqrt{2}}=\frac{13}{\sqrt{2}} \times \frac{2 \sqrt{2}}{13}=2\)
Question 2.
1. Let us express cosecθ and tanθ in terms of sine.
Solution: cosecθ= 1/sinθ
tanθ= sin/cos
= sinθ/√1-sin²θ
2. Let us write cosecθ and tanθ in terms of cosθ
Solution: cosecθ =1/sinθ = 1/√1-cos²θ
tanθ = sinθ/cosθ
= √1-cos²θ/cosθ
Question 3.
1. If secθ + tanθ = 2, then let us determine the value of (secθ– tanθ).
Solution: We know, sec²θ tan²θ = 1
or, (secθ+tanθ) (secθ-tanθ) = 1
or, 2 x (secθ – tanθ) = 1
secθ – tanθ = 1/2
2. If cosecê – cote = √2-1, then let us write by calculating, the value of (cosecθ + cotθ).
Solution: We know, cosec²θ – cot²θ
or, (cosecθ+cotθ) (cosecθ- cotθ) = 1
or, (cosecθ+cotθ) (√2+1) = 1
∴ cosecθ+cotθ = 1/√2-1
= (√2+1)/(√2-1)(√2+1)
= (√2+1)/2-1 = √2+1
3. If sinθ+cosθ = 1, then let us determine the value of sine x cosθ.
Solution: sinθ + cosθ = 1
or, (sinθ+cosθ)² = 12
or, sin²θ+ cos²θ + 2sinθ x cosθ = 1
or, 1+2sinθ cosθ = 1 [as sin²θ + cos²θ = 1]
∴ 2sinθ cosθ = 0 => sinθ cosθ = 0.
West Bengal Board Class 10 Math Book Solution In English
4. If tanθ+cotθ = 1, then let us determine the value of (tanθ – cotθ).
Solution: (tanθ-cotθ)²= (tanθ + cotθ) – 4. tanθ . cotθ
=(2)² – 4 x tanθ x 1/tan θ
=4-4=0.
∴tanθ – cotθ = 0
5. If sinθ – cosθ = 7/13 then let us determine the value of sinθ + cosθ.
Solution: (sinθ cosθ)² = (7/13)²
or, sin²θ+ cos²θ – 2sinθ cosθ = 49/169
or, 1 – 2sinθ cosθ = 49/169
or, 1-169 = 2sinθ cosθ
or, 169-49/169 = 2sinθ cosθ
or, 120/169 = 2sinθ cosθ
∴ (sine+cose)²= sin²θ+ cos²θ + 2sinθ cosθ
= 1 + 120/169
= 120+169/169
= 289/169
∴ sinθ+cosθ = √289/169
=17/13
6. If sinθcosθ = 1/2, then let us write by calculating, the value of (sinθ + cosθ).
Solution: (sinθ+cosθ)²= sin²θ+ cosθ²+2. sinθ. cosθ
= 1+2×1/2 =2.
∴ sinθ cosθ = √2.
7. If sin θ + cos θ/ sin θ-cos θ =7, then let us write by calculating, the value of tanθ.
Solution: sin θ + cos θ / sinθ-cos θ =7
or, \(\frac{\sin \theta+\cos \theta+\sin \theta-\cos \theta}{\sin \theta+\cos \theta-\sin \theta+\cos \theta}=\frac{7+1}{7-1}\)
or, \(\frac{2 \sin \theta}{2 \sin \theta}=\frac{8}{6}\)
or, \(\tan \theta=\frac{4}{3}\)
8. If secθ+cosθ = 5/3 then let us write by calculating, the value of (secθ – cosθ).
Solution: (secθ – cosθ)²= (secθ+cosθ)² – 4. secθ. cosθ
= (5/3)²- 4 . sec x 1/secθ
= 25/9 – 4
= 25- 1 / 9
9. Let us determine the value of tan from the relation 5sin²0 + 4cos²0 = 9/2
Solution: 5sin²θ + 4cos²θ = 9/2
\(\text { 5. } \sin ^2 \theta+4\left(1-\sin ^2 \theta\right)=\frac{9}{2}\) \(5 \sin ^2 \theta-4 \sin ^2 \theta+4=\frac{9}{2}\) \(\sin ^2 \theta=\frac{9}{2}-4=\frac{9-8}{2}=\frac{1}{2}\)∴ \(\cos ^2 \theta=1-\sin ^2 \theta=1-\frac{1}{2}=\frac{1}{2}\)
∴ \(\tan ^2 \theta=\frac{\sin ^2 \theta}{\cos ^2 \theta}=\frac{1 / 2}{1 / 2}=1\)
∴ \(\tan \theta=\sqrt{1}=1\)
10. If sec²θ + tan²θ =13/12 then let us write by calculating, the value of (sec10 – tan10).
Solution: sec4θ– tan4θ
= (secθ+tan²θ) (sec²θ – tan²θ)
= 13/12 x 1
= 13/12
Question 4.
1. In ΔPQR, ∠Q is a right angle. If PR = √5 units and PQ – RQ = 1 unit, then let us determine the value of cos P – cos R.
Solution:
Given
In ΔPQR, ∠Q is a right angle. If PR = √5 units and PQ – RQ = 1 unit
cos P – cos R (given PQ – QR = 1)
= PQ/PR – QR/PR
= PQ-QR / PR
= 1√5 unit
2. In ΔXYZ, Y is a right angle. If XY = 2√3 units and XZ – YZ = 2 units then let us determine the value of (sec X – tan X).
Solution: Given
In ΔXYZ, Y is a right angle. If XY = 2√3 units and XZ – YZ = 2 units
XY = 2√3 unit
& XZ – YZ = 2 units.
sec x – tan x
= \(\frac{X Z}{X Y}-\frac{Y Z}{X Y}\)
= \(\frac{X Z-Y Z}{X Y}=\frac{2}{2 \sqrt{3}}\)
∴ \(\sec X-\tan X=\frac{1}{\sqrt{3}}\)
Question 5. Let us eliminate ‘θ’ from the relations’
1. x = 2 sinθ, y = 3 cosθ
Solution: x = 2sinθ & y = 3coseθ
∴ sinθ = x/2 ∴ cosθ = y/3
We know, sin²θ + cos²θ = 1
∴ x²/4 + y2/9 = 1
2. 5x=3secθ, y = 3tanθ
Solution : 5x = 3 secθ; &y = 3tanθ
∴ \(\sec \theta=\frac{5 x}{3}\)
∴ \(\tan \theta=\frac{y}{3}\)
We know, \(\sec ^2 \theta-\tan ^2 \theta=1\)
or, \(\left(\frac{5 x}{3}\right)^2-\left(\frac{y}{3}\right)^2=1\)
or, \(\frac{25 x^2}{9}-\frac{y^2}{9}=1\)
or, \(25 x^2-y^2=9\)
Question 6.
1. If sinα = 5/13 then let us show that, tanα+ secα = 1.5.
Solution: sinα = 5/13
Let PQ = 5k
PR = 13k
∴ QR = \(\sqrt{P R^2-P Q^2}\)
= \(\sqrt{(13 K)^2-(5 K)^2}\)
= \(\sqrt{169 K^2-25 K^2}=\sqrt{144 K^2}\)
∴ QR = 12k
∴ \(\tan \alpha+\sec \alpha=\frac{P}{B}+\frac{H}{B}=\frac{5 K}{12 K}+\frac{13 K}{12 K}=\frac{18 K}{12 K}=\frac{3}{2}=1.5\) Proved.
2. If tanA = n/m then let us determine the values of both sinA and secA.
Solution: tanA = n/m
or, \(\frac{\sin A}{\cos A}=\frac{n}{m}\)
⇒ \(\frac{\sin A}{\sqrt{1-\sin ^2 A}}=\frac{n}{m}\)
or, \(\frac{\sin ^2 A}{1-\sin ^2 A}=\frac{n^2}{m^2}\)
or, \(\frac{1-\sin ^2 A}{\sin ^2 A}=\frac{m^2}{n^2}\)
or, \(\frac{1}{\sin ^2 A}-\frac{\sin ^2 A}{\sin ^2 A}=\frac{m^2}{n^2}\)
or, \(\frac{1}{\sin ^2 A}-1=\frac{m^2}{n^2}\)
or, \(\frac{1}{\sin ^2 A}=\frac{m^2}{n^2}+1\)
or, \(\frac{1}{\sin ^2 A}=\frac{m^2+n^2}{n^2}\)
or, \(\sin ^2 A=\frac{n^2}{m^2+n^2}\)
∴ \(\sin A=\frac{n}{\sqrt{m^2+n^2}}\)
Again, \(\sec ^2 A-\tan ^2 A=1\)
or, \(\sec ^2 \mathrm{~A}=1+\tan ^{26} \mathrm{~A}\)
= \(1+\frac{n^2}{m^2}\)
= \(\frac{m^2+n^2}{m^2}\)
∴ \(\sec A=\sqrt{\frac{m^2+n^2}{m^2}}\)
3. If sec = x/√x² + y² then let us show that, x sinθ = y cosθ.
Solution:
⇒ \(\sin \theta=\sqrt{1-\cos ^2 \theta}=\sqrt{1-\left(\frac{x}{\sqrt{x^2+y^2}}\right)^2}\)
⇒ \(\sin \theta=\sqrt{1-\frac{x^2}{x^2+y^2}}=\sqrt{\frac{x^2+y^2-x^2}{x^2+y^2}}=\sqrt{\frac{y^2}{x^2+y^2}}=\frac{y}{\sqrt{x^2+y^2}}\)
∴ L.H.S. = x sinθ = \(x \cdot \frac{y}{\sqrt{x^2+y^2}}=\frac{x y}{\sqrt{x^2+y^2}}\)
R.H.S. = y cosθ = \(y \cdot \frac{x}{\sqrt{x^2+y^2}}=\frac{x y}{\sqrt{x^2+y^2}}\)
∴ L.H.S. = R.H.S. Proved.
4. If sinα = a²-b² / a²+b² then let us show that, cotα = 2ab/a²-b²
Solution: sinα = a²-b² / a²+b²
∴ \(\cos ^2 \alpha=1-\sin ^2 \alpha=1-\frac{\left(a^2-b^2\right)}{\left(a^2+b^2\right)}=\frac{\left(a^2+b^2\right)-\left(a^2-b^2\right)}{\left(a^2+b^2\right)^2}\)
= \(\frac{\left(a^4+b^4+2 a^2 b^2\right)-\left(a^4+b^4-2 a^2 b^2\right)}{\left(a^2+b^2\right)^2}=\frac{4 a^2 b^2}{\left(a^2+b^2\right)^2}\)
∴ \(\cos \alpha=\frac{2 a b}{a^2+b^2}\)
⇒ \(\cot =\frac{\cos \alpha}{\sin \alpha}=\frac{2 a b /\left(a^2+b^2\right)}{\left(a^2-b^2\right) /\left(a^2+b^2\right)}\)
= \(\frac{2 a b}{\left(a^2+b^2\right)} \times \frac{\left(a^2+b^2\right)}{\left(a^2-b^2\right)}\)
∴ \(\cos \alpha=\frac{2 a b}{a^2-b^2}\) Proved.
5. If sinθ / x = cosθ / y then let us show that sinθ = x-y/√x² + y²·
Solution: sinθ / x = cos θ/ y = K(let)
∴ sinθ = xK & cosθ = yK
We know, \(\sin ^2 \theta+\cos ^2 \theta=1\)
or, \(\mathrm{x}^2 \mathrm{~K}^2+\mathrm{y}^2 \mathrm{~K}^2=1\)
or, \(\mathrm{K}^2\left(\mathrm{x}^2+\mathrm{y}^2\right)=1\)
∴ \(K^2=\frac{1}{x^2+y^2}\)
∴ \(K=\frac{1}{\sqrt{x^2+y^2}}\)
Now, sinθ – cosθ = xK – yK
= \(x \frac{1}{\sqrt{x^2+y^2}}-y \cdot \frac{1}{\sqrt{x^2+y^2}}\)
∴ \(\sin \theta-\cos \theta=\frac{x-y}{\sqrt{x^2+y^2}}\) Proved.
6. If (1 + 4x²) cosA = 4x, then let us show that cosecA + cotA = 1+2x/1-2x
Solution: (1+ 4x²)cosA = 4x
∴ \(\cos A=\frac{4 x}{1+4 x^2}\)
⇒ \(\sin ^2 A=1-\cos ^2 A=1-\left(\frac{4 x}{1+4 x^2}\right)^2=\frac{\left(1+4 x^2\right)^2-16 x^2}{\left(1+4 x^2\right)^2}\)
= \(\frac{1+16 x^4+8 x^2-16 x^2}{\left(1+4 x^2\right)^2}=\frac{1+16 x^4-8 x^2}{\left(1+4 x^2\right)^2}=\frac{\left(1-4 x^2\right)^2}{\left(1+4 x^2\right)^2}\)
∴ \(\sin A=\frac{1-4 x^2}{1+4 x^2}\)
∴ \({cosec} A=\frac{1+4 x^2}{1-4 x^2}\)
⇒ \(\cot A=\frac{\cos A}{\sin A}=\frac{4 x / 1+4 x^2}{\left(1-4 x^2\right) / 1+4 x^2}=\frac{4 x}{1-4 x^2}\)
⇒ \({cosec} A+\cot A=\frac{1+4 x^2}{1-4 x^2}+\frac{4 x}{1-4 x^2}\)
= \(\frac{1+4 x^2+4 x}{1-4 x^2}=\frac{(1+2 x)^2}{(1+2 x)(1-2 x)}\)
∴ \({cosec} A+\cot A=\frac{1+2 x}{1-2 x}\)
Proved.
7. If x = a sine and y = b tanθ, then let us prove that a²/x²- b²/y² = 1
Solution: x = a sine & y = b tane
or, \(\sin \theta=\frac{x}{a}\) ∴ \(\tan \theta=\frac{\mathrm{y}}{\mathrm{b}}\)
or, \({cosec} \theta=\frac{a}{x}\) ∴ \(\cot \theta=\frac{b}{y}\)
We know, \({cosec}^2 \theta-\cot ^2 \theta=1\)
or, \(\frac{a^2}{x^2}-\frac{b^2}{y^2}=1\) Proved.
8. If sinθ + sin² = 1, then let us prove that cos²θ+ cos²θ = 1.
Solution: sinθ + sin²θ = 1
∴ sinθ = 1 – sin²θ = cos²θ
∴ sin²θ = cos1θ
∴ cos²θ+ cos θ sine + sin²θ = 1 Proved
West Bengal Board Class 10 Math Book Solution In English Chapter 23 Trigonometric Ratios And Trigonometric Identities Exercise 23.3 Multiple Choice Question
1. If 3x = cosecα and 3/x = cot α ,then the value of 3(x² – 1/x²) is
1. 1/27
2. 1/81
3. 1/3
4. 1/9
Solution: cosecα = 3x & cot = 3/x
⇒ \({cosec}^2 \alpha-\cot ^2 \alpha=1\)
⇒ \((3 x)^2-\left(\frac{3}{x}\right)^2=1\)
or, \(9 x^2-\frac{9}{x^2}=1\)
or, \(3\left(3 x^2-\frac{3}{x^2}\right)=1\)
∴ 3x² – 3/x²
= 1/3
Answer: 3. 1/3
2. If 2x = sec A and 2/x = tan A, then the value of 2(x² – 1/x²)is
1. 1/2
2. 1/4
3. 1/8
4. 1/16
Solution: sec²A – tan²A= 1
or, \((2 x)^2-\left(\frac{2}{x}\right)^2=1\)
or, \(4 x^2-\frac{4}{x^2}=1\)
or, \(4\left(x^2-\frac{1}{x^2}\right)^2=1\)
⇒ \(2\left(x^2-\frac{1}{x^2}\right)^2=\frac{1}{2}\)
Answer: 1. 1/2
3. If tan∝ + cot ∝ = 2, then the value of (tan¹³∝ + cot¹³∝) is
1. 1
2. 0
3. 2
4. None
Solution: tan∝ + cot∝ = 2
or, \(\tan \alpha+\frac{1}{\tan \alpha}=2\)
⇒ \(\frac{\tan ^2 \alpha+1}{\tan \alpha}=2\)
or, \(\tan ^2 \alpha+1=2 \tan \alpha\)
or, \(\tan ^2 \alpha-2 \tan \alpha+1=0\)
⇒ \((\tan \alpha-1)^2=0\)
∴ tanα = 1 & cotα = 1
∴ \(\tan ^{13} \alpha+\cot ^{13} \alpha\)
= \((\tan \alpha)^{13}+(\cot \alpha)^{13}\)
= 1 + 1 = 2
Answer: 3. 2
4. If sin 0 – cos 0 = 0 (0º ≤θ≤ 90º) and sec θ + cosec θ = x, then the value of x is
1. 1
2. 2
3. √2
4. 2√2
Solution: sinθ- cosθ = 0
sinθ = cosθ
= sinθ (90 – θ)
∴ θ = 90° – θ
∴ 2 = 90°
∴ θ = 45°
secθ- cosecθ = x
or, sec45° + cosec45° = x
or, √2 + √2 = x
∴ 2√2 = x
∴ x = 2√2
Answer: 4. 2√2
5. If 2cos³θ = 1, then the value of θ is
1. 10º
2. 15º
3. 20º
4. 30º
Solution: 2cos³θ = 1
∴ cos3θ = 1/2 = cos60º
∴ 3θ = 60º .. θ= 60º /2 = 20º
Answer: 3. 20º
West Bengal Board Class 10 Math Book Solution In English Chapter 23 Trigonometric Ratios And Trigonometric Identities Exercise 23.3 True Or False
1. If 0°< a < 90°, then the least value of (sec²α + cos²α) is 2.
Answer: True
2. The value of (cos0° x cos1° x cos2° x cos3° x…………..cos90°) is 1.
Answer: False
Class 10 WBBSE Math Solution In English Chapter 23 Trigonometric Ratios And Trigonometric Identities Exercise 23.3 Fill In The Blanks
1. The value of (4/sec²θ+ 1/1+ cot²θ +3sin²θ) is————-
Solution: 4/sec² θ + 1/1+ cot²θ +3sin²θ
= 4cos²θ + sin²θ + 3sin²θ
= 4(cos²θ + sin²θ)
= 4 x 1
= 4
2. If sin (θ-30°) = 1/2 then the value of cos e is————
Solution: sin(θ – 30°) = 1/2 = sin30°
θ – 30° = 30°
θ = 30° + 30° ∴ θ =- 60°
∴ cos θ= cos 60° = 1/2
3. If cos²θ – sin²θ = 1/2 , then the value of Cos4θ- sin4θ is ———
Solution: Cos4θ- sin4θ
(cos²θ)² – (sin²θ)²
= (cos²θ + sin²θ)(cos²θ – sin²θ)
= 1 x 1/2
= 1/2
Chapter 23 Trigonometric Ratios And Trigonometric Identities Exercise 23.3 Short Answers
1. If r cosθ = 2√3, r sinθ = 2, and 0º <θ <90º, then let us determine the values of both r and θ
Solution:
If r cosθ = 2√3, r sinθ = 2, and 0º <θ <90º
r cosθ = 2√3, r sinθ = 2
⇒ \(\frac{r \sin \theta}{r \cos \theta}=\frac{2}{2 \sqrt{3}} or, \tan \theta=\frac{1}{\sqrt{3}}=\tan 30^{\circ}\)
∴ θ = 30°
Again, \(r^2 \cos ^2 \theta+r^2 \sin ^2 \theta=(2 \sqrt{3})^2+2^2\)
Or, \(r^2\left(\cos ^2 \theta+\sin ^2 \theta\right)=12+4=16\)
Or, \(r^2 \times 1=16\)
Or, \(x=\sqrt{16} \pm 4\)
2. If sinA + sinB = 2 where 0° SA≤ 90° and 0° B≤ 90°, then let us find out the value of (cosA+ cosB).
Solution.
If sinA + sinB = 2 where 0° SA≤ 90° and 0° B≤ 90°,
sinA + sinB = 2
Greatest value of sinA ∴ sin A = sin90° ∴ A= 90°
Greatest value of sinB ∴ sin B = sin90° ∴ B = 90°
cosA + cosB = cos90° + cos90° = 0 + 0 = 0
3. If 0°<θ< 90°, then let us calculate the least value of (9tan²θ + 4cot2θ).
Solution. 9tan²θ+4cot²θ = (3tanθ)² + (2cot²θ)²
= (3tanθ2-cotθ)²-2. 3tanθ. 2cotθ
= (3tanθ-2cotθ)²-12 tanθ x 1/tanθ
∴ Least value of (9tan²θ+ 4cot²θ) is 12.
4. Let us calculate the value of ( Sin6+cos6+ 3sin²α cos²α).
Solution: Sin6∝+cos6∝+3sin²α cos²α.
= (sin²α)³ + (cos²α)³ + 3. sin²a. cos²α(sin²α + cos²α)
= (sin²α + cos²α)³ = (1)³
= 1.
5. If cosec2θ = 2cote and 0° <0< 90°, then let us determine the value of 0.
Solution.
If cosec2θ = 2cote and 0° <0< 90°
cosec²θ = 2cote
or, 1+ cot²θ – 2cotθ = 0
or, (1 – cote)² = 0
1-cotθ=0 ∴ cotθ1 = cot45°
∴ 0 = 45°