WBBSE Solutions For Class 10 Maths Chapter 24 Trigonometric Ratios Of Complementary Angle Exercise 24.1

Class 10 WBBSE Math Solution In English Chapter 24 Trigonometric Ratios Of Complementary Angle Exercise 24.1

 

Application: 1. We understand that ZBCA and CAB are complementary [complementary/supplementary] to each other.

WBBSE Solutions For Class 10 Maths Chapter 24 Trigonometric Ratios Of Complementary Angle 1

Read and Learn More WBBSE Solutions For Class 10 Maths

Application 2. Let us find the value of sec 90°/cosec41°

Solution: sec 49°/cosec41°

= sec 49°/cos ec(90° 49°) 

= sec 49°/sec 49°
= 1

Application 3. Let us show that sin43° cos47° + cos43° sin47° = 1

Solution: sin43° cos47° + cos43° sin47°

=sin(90° 47°) cos47° + cos(90° 47°) sin47°

= cos47° cos47° + sin47° sin47°

= cos247° + sin247° 

= 1

∴ L.H.S. = R.H.S. Proved.

WBBSE Solutions For Class 10 Maths Chapter 24 Trigonometric Ratios Of Complementary Angle Exercise 24.1

Question 3. If tan50° = P/q let us find the value of cos40°.

Solution: tan50° = p/q

AC² = AB² + BC²

= p² + q²

∴ AC = √ p² + q²

cos 40º = cos BAC = AB/AC = P/√ p² + q²

 

WBBSE Solutions For Class 10 Maths Chapter 24 Trigonometric Ratios Of Complementary Angle 2

Question 4. 

1. sin 38º/cos 52º

Solution: sin 38º/cos 52º

= sin38º/cos(30 – 38)º

= sin38º/sin38

= 1

2. cosec 79º/sec11º

Solution: cosec 79º/sec11º

= cosec 79º/sec(90º-79º)

= cosec 79º/cosec 79º

= 1

3. tan27º/cot63º

Solution: tan27º/cot63º

= tan(90º-63º)/cot63º

= cot63º/cot63º

= 1


Question 5.

1. sin66º – cos24º = 0

Solution: L.H.S = sin66º – cos24º

= sin(90º – 24º)

= cos 24º – cos 24º

= 0

= R.H.S

2. cos²57º + cos²33º = 1

Solution: cos²57º + cos²33º

= cos²(90º – 30º) + cos²33º

= sin²33º + cos²33º

= 1

= R.H.S

3. cos²75º-sin²12º = 0

Solution: L.H.S = cos²75º-sin²12º

= cos²(90º-15º) – sin²15º

= sin²15º – sin²15º

= 1

= R.H.S

4. cosec²48º – tan²42º = 1

Solution: L.H.S = cosec²48º – tan²42º

= cosec²48º – tan²(90º-48º)

= cosec²48º – cot²48º

= 1

= R.H.S

Class 10 WBBSE Math Solution In English

5. sec 70ºsin20º + cos20º cosec70º = 2

Solution: L.H.S = sec 70ºsin20º + cos20º cosec70º

= sec(90º – 20º) sin20º + cos20º. cosec(90º-20º)

= cosec20º . sin20º + cos20º x 1/cos20º

= 1+1

= 2

= R.H.S

Question 6. If two angles a and ẞ are complementary angles, let us show that:

1. sin’α + sin2ß = 1

Solution: L.H.S. = sin2α + sin2ß

= sin2(90-B) + sin2ß          [As α + B = 90°]

=cos2B+ sin2B

= 1

= R.H.S.

2. cotẞ + cosẞ= cosẞ/cosα(1 + sinẞ)

Solution: R.H.S = cosẞ/cosα(1 + sinẞ)

= \(\frac{\cos \beta}{\cos (90-\beta)}(1+\sin \beta)\)

= \(\frac{\cos \beta}{\sin \beta}(1+\sin \beta)\)

= \(\frac{\cos \beta}{\sin \beta} \times 1+\frac{\cos \beta}{\sin \beta} \times \sin \beta\)

= \(\cot \beta+\cos \beta=\text { L.H.S. }\)

3. secα/cosα – cot²β =1

Solution: L.H.S = secα/cosα – cot²β

= sec²α – cot²α(90º-α)

= sec²α – tan²α

= 1

= R.H.S

4. If sin 17° = x/y, let us show that sec17° – sin73° = x²/y√y²-x²

Solution: sin17º = x/y

∴ \(B C^2=A C^2-A B^2\)

= \(y^2-x^2\)

∴ \(B C=\sqrt{y^2-x^2}\)

L.H.S. = sec17º – sin73º

= \(\frac{A C}{B C}-\frac{B C}{A C}\)

= \(\frac{y}{\sqrt{y^2-x^2}}-\frac{\sqrt{y^2-x^2}}{y}\)

= \(\frac{y^2-\left(y^2-x^2\right)}{y\left(\sqrt{y^2-x^2}\right)}=\frac{x^2}{y \sqrt{y^2-x^2}}=\text { R.H.S. }\)

5. Let us show that sec²12° – 1/tan278°

Solution: L.H.S. = sec²12°

= \(\sec ^2 12^{\circ}-\frac{1}{\tan ^2\left(90^{\circ}-12^{\circ}\right)}=\sec ^2 12^{\circ}-\frac{1}{\cot ^2 12^{\circ}}\)

= \(\sec ^2 12^{\circ}-\tan ^2 12^{\circ}=1=\text { R.H.S }\)

6. ∠A + ∠B = 90°, let us know that 1+tanA/tanB = sec²A

Solution: ∠A + ∠B = 90°

∠B = 90° – ∠A

tan∠B = tan(90° – A)

= cot ∠A

L.H.S = \(1+\frac{\tan A}{\tan B}\)

= \(1+\frac{\tan A}{\cot A}=1+\tan A \times \tan A\)

= \(1+\tan ^2 A=\sec ^2 A=\text { R.H.S. }\)

7. Let us show that cosec²22°cot²68° = sin²22°+sin²68°+cot²68°

Solution: L.H.S = cosec²22°cot²68°

= \({cosec}^2\left(90^{\circ}-68^{\circ}\right) \cot ^2 68^{\circ}\)

= \(\sec ^2 68^{\circ} \cdot \cot ^2 68^{\circ}\)

= \(\frac{1}{\cos ^2 68^{\circ}} \times \frac{\cos ^2 68^{\circ}}{\sin ^2 68^{\circ}}\)

= \(\frac{1}{\sin ^2 68^{\circ}}={cosec} 268^{\circ}\)

R.H.S = \(\sin ^2 22^{\circ}+\sin ^2 68^{\circ}+\cot ^2 68^{\circ}\)

= \(\sin ^2\left(90^{\circ}-68^{\circ}\right)+\sin ^2 68^{\circ}+\cot ^2 68^{\circ}\)

= \(\cos ^2 68^{\circ}+\sin ^2 68^{\circ}+\cot ^2 68^{\circ}\)

= \(1+\cot ^2 68^{\circ}\)

= \({cosec}^2 68^{\circ}\)

∴ L.H.S = R.H.S

8. If ∠P + ∠Q = 90º, let us show that, √sinP/cosQ – sinPcosQ = cosP

Solution: L.H.S = √sinP/cosQ – sinPcosQ         P+Q = 90º , Q =90º-P

= \(\sqrt{\frac{\sin P}{\sin P}-\sin P \cdot \sin P}\)

= \(\sqrt{1-\sin ^2 P}\)

= \(\sqrt{\cos ^2 P}\)

= cosP = R.H.S

9. Let us prove that cot12ºcot38ºcot52ºcot78ºcot60º = 1/√3

Solution: L.H.S = cot12ºcot38ºcot52ºcot78ºcot60º

= \(\cot \left(90^{\circ}-78^{\circ}\right) \cot 38^{\circ} \cot \left(90^{\circ}-38^{\circ}\right) \cot 78^{\circ} \times \frac{1}{\sqrt{3}}\)

= \(\tan 78^{\circ} \cdot \cot 38^{\circ} \cdot \tan 38^{\circ} \cot 78^{\circ} \times \frac{1}{\sqrt{3}}\)

= \(\tan 78^{\circ} \cdot \cot 78^{\circ} \cdot \cot 38^{\circ} \cdot \tan 38^{\circ} \cdot \frac{1}{\sqrt{3}}\)

= \(1 \times 1 \times \frac{1}{\sqrt{3}}\)

= \(\frac{1}{\sqrt{3}}\) = R H S

Question 7. AOB is the diameter of a circle with center O and C is any point on the circle, joining A, C; B, C; O, C, let us show that ZACB = semicircle angle = 90°

1. tan ∠ABC = cot ∠ACO

Solution:

AOB is a diameter of a circle with center O and C is any point on the circle, joining A, C; B, C; O, C,

L.H.S. = tan ∠ABC

= tan(90° ∠ACO)

= cot∠ACO

= R.H.S       [As OB = OC]

WBBSE Solutions For Class 10 Maths Chapter 24 Trigonometric Ratios Of Complementary Angle 11

2. sin² ∠BCO + sin² ∠ACO = 1

Solution: L.H.S= sin² ∠BCO + sin² ∠ACO

= sin²(90° -∠ACO) + sin² ∠ACO

= cos²∠ACO + sin² ∠ACO

= 1. R.H.S.

3. cosec2 CAB – 1 = tan2 ZABC 

Solution: L.H.S. cosec²∠CAB-1

= cosec²(90° – ∠ABC) – 1

= sec² ∠ABC – 1 

= tan² ∠ABC

= R.H.S.

Question 8. ABCD is a rectangular figure joining A, and C let us prove that:

1. tan ∠ACD = cot ∠ACB

Solution: tan ∠ACD tan(90° – ∠ACB)

= cot∠ACB= R.H.S

WBBSE Solutions For Class 10 Maths Chapter 24 Trigonometric Ratios Of Complementary Angle 12

2. tan²∠CAD + 1 = 1/sin²∠BAC

Solution: tan²∠CAD + 11

= tan²(90° – <BAC) + 1

= cot²∠BAC +1

= cosec² ∠BAC

=1/sin²∠BAC

= R.H.S.

WBBSE Solutions Guide Class 10 Chapter 24 Trigonometric Ratios Of Complementary Angle Exercise 24.1 Multiple Choice Question

Question 1. The value of (sin43° cos47° + cos43° sin47°) is

1. 0
2. 1
3. sin4°
4. cos4°

Solution: sin43° cos47° + cos43° sin47°

= cos47°. cos47° + sin47°. sin47°

= cos247° + sin247°

1

Answer. 2. 1


Question 2. The value of 
tan35°/cot55° +  cot78°/tan12°

1. 0
2. 1
3. 2
4. None of this

Solution : tan35°/cot55° +  cot78°/tan12°

= tan 35°/cot(90-35°) + cot 78°/ tan(90°-78°)

= tan 35° /tan 35° + cot 78°/cot 78°

=1+1

=2

Answer. 3. 2


Question 3. The value of {cos(40° +8) sin(50° – 0)} is

1. 2cosθ
2. 7sinθ
3. 0
4. 1

Solution: cos(40 + θ) – sin(50 – θ)

= cos(40+θ) cos(90 (50-θ)}

= cos(40+θ) cos(40 + θ)

= 0

Answer: 3. 0

Question 4. ABC is a triangle. sin(B+C/2)

1. sin A/2
2. Cos A/2
3. sin A
4. cosA

Solution: A/2 + B/2 + C/2 = 90º

∴ \(\frac{B}{2}+\frac{C}{2}=90^{\circ}-\frac{A}{2}\)

∴ \(\sin \left(\frac{B+C}{2}\right)=\sin \left(90^{\circ}-\frac{A}{2}\right)\)

= \(\cos \frac{A}{2}\)

Question 5. if A+B = 90º and tan A = 3/4, value of cot B is.

1. 3/4
2. 4/3
3. 3/5
4. 4/5

Solution: cot B = cot(90º – A) = tanA = 3/4

Answer: 1. 3/4

Chapter 24 Trigonometric Ratios Of Complementary Angle Exercise 24.1 True Or False

Question 1. The values cos54° and sin36° are equal.

True

Question 2. The simplified value of (sin12° – cos78°) is 1

False

WBBSE Class 10 Maths Solutions Chapter 24 Trigonometric Ratios Of Complementary Angle Exercise 24.1 Fill In The Blanks

1. The value of (tan15° x tan45° x tan60° x tan78°) is √3.

2. The value of (sin12° x cos18° x sec78° x cosec72°) is 1.

3. If A and B are complementary to each other, sin A = cos B.

WBBSE Class 10 Maths Solutions Chapter 24 Trigonometric Ratios Of Complementary Angle Exercise 24.1 Short Answer

Question 1. If sin 10θ cos8θand 100 is a positive acute angle, let us find the value of tan 9θ.

Solution.

If sin 10θ cos8θand 100 is a positive acute angle

sin10θ = cos8θ

or, sin10θ = sin(90° – 8θ)

or, 10θ = 90°-8θ

18θ = 90°      θ = 90/18 =

= tan9θ

= tan(9 x 5°) 

= tan45° 

= 1

Question 2. If tan4θ x tan60 = 1 and 60 is a positive acute angle, let us find the value of θ. 

Solution.

If tan4θ x tan60 = 1 and 60 is a positive acute angle

tan4θ x tan6θ = 1

or, tan4θ = 1/tan 6θ

cot6θ = tan(9θ-6θ)

∴ 4θ = 90-6θ

or, 10θ = 90   

 ∴ 0 = 90/10

= 9°

Question 3. Let us find the value of 2sin²63°+1+2sin²27°/ 3cos²17° -2+3cos² 73°

Solution: 2sin²63°+1+2sin²27°/ 3cos²17° -2+3cos² 73°

= \(\frac{2 \sin ^2 63^{\circ}+1+2 \sin ^2 27^{\circ}}{3 \cos ^2 17^{\circ}-2+3 \cos ^2 73^{\circ}}\)

= \(\frac{1+2\left(\sin ^2 63^{\circ}+\sin ^2 27^{\circ}\right)}{3\left(\cos ^2 17^{\circ}+\cos ^2 73^{\circ}\right)-2}=\frac{1+2 \times 1}{3 \times 1-2}=\frac{3}{1}=3\)

Question 4. Let us find the value of (tan1° x tan2° x tan3°———-tan89°).

Solution: tan1º x tan89º x tan2º x tan88º

= 1 x 1 x 1

= 1

Question 5. If sec5A = cosec (A + 36°) and 5A is a positive acute angle, let us find the value of A.

Solution.

If sec5A = cosec (A + 36°) and 5A is a positive acute angle

sec5A = cosec(A + 36)

= cosec(90° 5A) = cosec(A + 36°)

or, 90° – 5A = A + 36°

or, 90° – 36° 5A + A

or, 6A = 54°

A = 9°.

Leave a Comment