WBBSE Solutions For Class 10 Maths Chapter 9 Quadratic surd Exercise 9.1

Chapter 9 Quadratic surd Exercise 9.1

Question 1. I write by understanding 4 pure quadratic surds and 4 mixed quadratic surds.

Solution: 4 pure quadratic surds are √3,- √5

4 mixed quadratic surds are 2-√3; 2+ √6 , 3/2 – 10 , 3+ √5

Question 2. Are √4, √25 quadratic surds?

Solution: Apparently √4. √25 are in the form of surds but they are not surds. 

Rational number, √4 = 2 and √25 = 5.

I apply Sreedhar Acharyya’s formula for solving the equation x2 – 2ax + (a2-b2) = 0. 

We see that the roots are a + √b and a- √b, 

Read and Learn More WBBSE Solutions For Class 10 Maths

both of which are mixed surds, where b is a positive rational number which is not a square number of any rational number.

Question 3. What type of number do we get by the addition, subtraction, multiplication, division, and square of the two numbers 8 and 12?

Solution: 8+ 12 = 20 (Integer)

8-12= -4 (Integer)

8 x 12 = 96 (Integer)

8/12 = 2/3 (Rational)

WBBSE Solutions For Class 10 Maths Chapter 9 Quadratic surd Exercise 9.1

Question 4. We write similar surds in a specific place from the following quadratic surds. 

√45, √80, √147, √180 and √500

Solution:  √45, √80, √147, √180 and √500

√45

= √9×5 

= 3√5

√45 = 3√5

√80

= √16×54 

= 45

√80 = 4√5

√147

= √7x7x3

= 7√3

√147 = 7√3

√180

=√6x6x5 

= 6√5

√180 = 6√5

√500

= √2x2x5x5x5 

=2×5√5

=10√5

√500 =10√5

Question 5. Let us write the similar surds among the quadratic surds √48,

√27, √20 and √75

Solution: √48,√27, √20 and √75

√48

= √2x2x2x2x3

= 4√3

√27

= √3x3x3

= 3√3

√20

=√2×2×5

=2√5

√75

= √5x5x3

=5√3

√48. √27 √75 are similar surds.

Question 6. Let us write by calculating the value of (√12+√45) and (√2-√8) and see whether they can be expressed in pure quadratic surds.

Solution:

√2+ √8

= √2 + √2×2×2

= √2+2√2

= 3√2

√2-√8 

= √2-√2x2x2

= √2-2√2

=-√2

(√2-√8)  is a pure quadratic surd.

Question 7. Let us write by calculating the sum of √12,-4√3 and √3 

Solution: (√12)+(-4√3) +6√3

= 2√3 −4√3 +6√3

= 4√3.

(√12)+(-4√3) +6√3 = 4√3.

Question 8. (9-2√5) + (12+7√5)   

Solution: (9-2√5) + (12+7√5)

=9+12-2√5

= 21 +5√5

(9-2√5) + (12+7√5) = 21 +5√5

Question 9. I write any other two quadratic surds whose sum is a rational number. 

Solution: (6+√7)+(6-√7)=6+6+ √7-√7 = 12

Question 10. Let us write the following numbers in the form of the product of rational and irrational numbers.

1. √175

Solution: √175

=√5x5x7

= 5√7

√175 = 5√7

2. 2 √112

Solution: 2√112

= 2.√4x4x7

=2×4√√7=8√7

2√112 =8√7

3. √108

Solution: √108 

= √2x2x3x3x3

=2×3√3 =6√3

√108 =6√3

4. √125

Solution: √125

= √5x5x5

= 5√5

√125 = 5√5

5. 5√√119

Solution: 5√119

= 5√7×17

= 5√119

5√√119 = 5√119

Question 11. Let us show that √108-√75 = √3

Solution: √108 – √75 = √3

L.H.S

= √108√75 

= √6x6x3 – √5x5x3

= 6√3-5√3 

= √3 

R.H.S.

Question 12. Let us show that √98+ √8-2√32 = √2

Solution: √98 + √8-2√32 = √2

L.H.S= √98 + √8 -2√32 

= √7x7x2 + √2x2x2 -2√4x4x2 

=7√2 +2√2 -2×4√2

=9√2-8√2 

= √2 

R.H.S.

Question 13. Let us show that 3 √48-4√75+ √192 = 0

Solution: 3√48 -4√75 + √192 =0

L.H.S.

= 3√48-4√75 + √192

= 3√4x4x3 -4√5x5x3 + √8x8x3

=3×4√3-4×5√3 +8√3 

= 12√3-20√3 +8√3 

=20√3-20√3 

= 0 

R.H.S.

Question 14. Let us simplify: √12 + 18+ √27 – √32

Solution: √12+ √18+ √27-√32

=√2x2x3 + √3x3x2 + √3×3×3 – √4x4x2

=2√3 +3√2 +3√3-4√2

=2√3 +3√3 +3√3 -4√2

=5√3 – √2

Question 15.

1. Let us write what should be added with √5+ √√3 to get the sum 2√5. 

Solution: Required number = 2√5 – (√5+√3)

=2√5-√5-√3

=√5-√3

2. Let us write what should be subtracted from 7-√3 to get the sum of 25.

Solution: Required number = (7-√3)-(3+√3)

=7-√3-3-√3 

=7-3-√3 

=4-2√3.

3. Let us write the sum of 2+√3, √3+ √5, and 2+ √7. 

Solution: Required sum = 2 + √3 + √3 + √5 +2+√7

=2+2 + √√3 + √√3 + √5 + √7

=4+2√3 +√5+√7.

4. Let us subtract (-5+3 √11) from (10+ √11) and let us write the value of the subtraction.

Solution: Required subtraction = (10-√11)-(-5+3√11)

= 10- √11+5-3√11 

= 15-4√11

5. Let us subtract (5+ √2+ √7) from the sum of (-5+ √7) and (√7 + √2) and find the value of the subtraction.

Solution: Required value of subtraction = (-5+√7) + (√7+√2) – (5+√2+√7)

=-5+ √7 + √7 + √2-5-√2-√7 

=-10+ √7

6. I write two quadratic surds whose sum is a rational number. 

Solution: Two quadratic surds whose sum is a rational number, 

5+√3:5-√3.

Question 16. Let us write by calculating the product of (3+ √7 √5) and (2√2-1) 

Solution: (3+ √7-√5) x (2√2-1)

=6√2-3+2√14 – √7-2 √10-√5

Question 17. Let us write two rationalizing factors of √7. 

Solution: √7 & 2√7

Question 18. Let us see what will be the rationalizing factor of (5+ √7).

Solution : (5+√7)

= (5+√7)x (5-√7)

= (5)²- (√7)²

= 25-7

=18 [ (a+b) (a-b) = a2-b2]

Again, (5+√7)x(5+7)

=(√7 +5) (√7 -5)

=(√7)²- (5)²

=-18

Question 19. Let us write two rationalizing factors of 7-√3 

Solution: 7-√3

=(7+√3); (-7-√3)

Question 20. Let us see the rationalizing factors of (√11 – √6).

Solution: (√11-√6) (√11+√6)

=(√11)²-(√6)²

= 11-6

=5

Again, (√11-√6) √11-√6) = [(√11-√6) (√11+√6)]

= [11 – 6]

=-5

Question 21. Let us write two rationalizing factors of (√15+ √3)

Solution : (√15+√3)

(√15-√3): (-√15+√3)

Question 22. Let us write the conjugate guards of the following mixed and pure surds

1. 2+√3

Solution: 2+√3

=2-√3

2. 5-√2

Solution: 5-√2

=5+√2

3. √5-7

Solution: √5-7

=-√5+7 

4. √11 + 6

Solution: √11 + 6

= (6-√11)

5. √5

Solution: √5

= – √5

Question 23. Let us rationalize the denominator of

1. 4√5 / 5/√3

Solution:4√5 / 5√3

=4√5.√3 / 5√3.√3

=4√3/5×3

= 4√3 / 15

4√5 / 5√3 = 4√3 / 15

2. √6/3√7

Solution: √6/3√7

= 3√7/√6

= 3√7x√6 /√6x√6

= 3√42 /6

= √42/2

√6/3√7 = √42/2

 Question 24. Let us rationalize the denominator of 

1. (4+2√3)+(2-√3)

Solution: 4+2√3 / 2-√3

=(4+2√3) (2+√3) /(2-√3)2+√3)

=8+4√3 +4√3 +6/(√2)²-(√3)²

=14+8√3/4-3

= 14+8√3

4+2√3 / 2-√3 = 14+8√3

2. (√5+ √3) + (√5 – √3)

Solution: √5+√3/√5-√3

=(√5+√3)(√5+√3)/(√5-√3)(√5+√3)

= 5+2√5.√3+3 /(5)²-(√3)²

=8+2√15/ 5-3 

=2(24+√15)/2

= 4+ √15.

√5+√3/√5-√3 = 4+ √15.

Leave a Comment