WBBSE Solutions For Class 10 Maths Chapter 9 Quadratic surd Exercise 9.2

WBBSE Solutions For Class 10 Maths Chapter 9 Quadratic surd Exercise 9.2

Question 1:

1. Let us find the product of 3  and √3.

Solution: 31/2 x  √3

= 31/2 x  31/2 = 31/2+1/2 = 31 = 3.

Read and Learn More WBBSE Solutions For Class 10 Maths

2. Let us write what should be multiplied by 2√2 to get the product 4.

Solution: Required Number = 4/2√2

= 2 x 2 /2√2

=2/√2

=2.√√2/√2.√2

=2√2/2

=√2

“WBBSE Class 10 Maths Quadratic Surd Exercise 9.2 solutions”

3. Let us calculate the product of 3√5 and 5√3. 

Solution: 3√5×5√3

=3×5 x√5 × √3 

= 15√15

The product of 3√5 and 5√3 = 15√15

4. If √6 x √15 =x√10, then let us write by calculating the value of x.

Solution: If √6 x √15 

= x√10

or, √90 = x√10

or, √9x√10=x.√10

∴ x = √9 = 3

The value of x = 3

WBBSE Solutions For Class 10 Maths Chapter 9 Quadratic surd Exercise 9.2

5. If (√5+ √3) (√5-√3) = 25-x2 is an equation, then let us write by calculating the value of x.

Solution: If (√5+√3) (√5-√3)

= 25 – x²

Or, (√5)²-(√3)²

= 25-x2

or, 2=25-x²

or, x² = 25-2 = 23

∴ x = ±√23

The value of x = ±√23

“West Bengal Board Class 10 Maths Chapter 9 Quadratic Surd Exercise 9.2 solutions”

Question 2:

1. √7 x √14

Solution: √7x√14 = √7x√7×2 = √7× √7×√2

= 7√2

√7x√14 = 7√2

2. √12 x 2√3

Solution: √12×2√3 = √2×2×3×2√3 = 2√3×2√3 =2x2x√3.√3

= 4 x 3 

=12

√12×2√3 =12

3. √5 x √15 x √3

Solution: √5x√15x√3

= √15x√15 √15×15

= 15

√5x√15x√3 = 15

4. √2x (3+ √5)

Solution: √2x(3+√5) = 3√2+√2 × √5 = 3√2+√10

5. (√2+ √3) (√2 – √3)

Solution: (√2+√3)(√2-√3) = (√2)-(√3) 2-3-1

“WBBSE Class 10 Quadratic Surd Exercise 9.2 solutions explained”

6. (2√3 +3√2) (4√2 + √5)

Solution:

(2√3+3√2) (4√2+√5)

=8√6+2√15+12√4+3√10

=8√6+2√15+12.2+3√10

=8√6+2√15 +24+3√10

(2√3+3√2) (4√2+√5) =8√6+2√15 +24+3√10

7. (√3+1) (√3-1) (2-√3) (4+2√3)

Solution : (√3+1)(√3-1) (2-√3) (4+2√3)

= {(√3)2 -(1)2} (2−√3) (4+2√3)· 

=(3-2) (2-√3) × 2(2+√3). 

=2×2×(2-√3) (2+√3) 

= 4x {(2)² – (√3)²}

= 4x (4-3)

= 4 × 1 

= 4 

(√3+1)(√3-1) (2-√3) (4+2√3) = 4 

“WBBSE Class 10 Maths Exercise 9.2 Quadratic Surd problem solutions”

Question 3:

1. If √x is the rationalizing factor of √5, let us write by calculating the smallest value of x (where x is an integer).

Solution: x = √5

2. Let us calculate the value of 3 √2 ÷ 3.

Solution: 3√2 ÷ 3 

= 3√2/3

=√2

Class 10 Maths Class 10 Social Science
Class 10 English Class 10 Maths
Class 10 Geography Class 10 Geography MCQs
Class 10 History Class 10 History MCQs
Class 10 Life Science Class 10 Science VSAQS
Class 10 Physical Science Class 10 Science SAQs

3. Let us write which smallest factor we should multiply with the denominator to rationalize the denominator of 7 ÷ √48.

Solution: 7÷ √48 

= 7/√48

= 7/√4x4x3

= 7/4√3

Required smallest factor = √3

4. Let us calculate the rationalizing factor of (√5+2) which is also its conjugate surd. 

Solution: (√5+2)

The conjugate surd of (√5+2) is 2- √5.

5. If (√5+ √2) ++ √7 = 1/7(√35 + a), let us calculate the value of a.

Solution: (√5+√2) ++√7 = 1/7(√35+a)

If √5+ √2 /7 =√35+a/7

=(√5+√2)√7 / √7 x √7 = √35+a/7

Or, √35+ √14/7 = √35+a/7

Or, √35+ √14 = √35+a

∴ a = √14

6. Let us write a rationalizing factor of 5/√3-2 which is not its conjugate surd.

Solution: 5/√3-2

The rationalizing factor of the denominator of 5/√3-2 is (√3+2).

Question 4. Let us write the conjugate surds of mixed quadratic surds (9-43) and (-2 -√7). 

Solution: Conjugate surd of (9-4√5) is (9+4√5)

& conjugate surd of (-2-√7) is (-2+√7).

5. Let us write two conjugate surds of each of the mixed quadratic surds given below.

1. √5+ √2

Solution: √5+√2

Two conjugate surds of √5+ √2 are (√5-√2) & (√5+√2).

2. 13+ √6

Solution: 13+ √6

Two conjugate surds of 13+ √6 are (13-√6) & (-13+ √6). 

3. √8-3

Solution: √8-3

Two conjugate surds of √8-3 are (- √8-3) & (√8+3).

4. √17-√15

Solution: √17-√15

Two conjugate surds of √17-√15 are (√17 + √15) & (-√17 – √15).

6. Let us rationalize the denominators of the following surds 

1. 2√3+3√2 / √6

Solution: 2√3+3√2/√6 

=(2√3+3√2) x √6/ √6 x √6 

= 2√18+3√12/6

=2×3√2+3×2√3 / 6

=6√2+6√3 / 6

= 6(√2+√3)/6

=√2 + √3

2√3+3√2/√6 =√2 + √3

“Class 10 WBBSE Maths Exercise 9.2 Quadratic Surd step-by-step solutions”

2. 2-1+6 / √5

Solution: √2-1+√6/√5

 = (√2-1+ √6)x√5 / √5 x √5

= √10-√5+√30 / 5

√2-1+√6/√5 = √10-√5+√30 / 5

3. √3-1 / √3+1

Solution: √3-1 / √3+1

= (√3+1)(√3+1) / (√3-1)x(√3+1)

= 3+1+2√3 / 3-1

=4+2√3 / 2

=2(2+√3) / 2

= (2 + √3) 

√3-1 / √3+1 = (2 + √3) 

4. 3+√5 / √7-√3

Solution: 3+√5 / √7-√3 

= (3+√5) (√7 + √3) / (√7-√3) (√7 + √3) 

= 3√7+√35+3√3+ √15 / (7)²-(3)²

= 3√7+√35+3√3+ √15 / 7-3

= 3√7+√35+3√3+√15 / 4

3+√5 / √7-√3  = 3√7+√35+3√3+√15 / 4

5. 3√2+1 / 2√5-1

Solution: 3√2+1 / 25-1

(3√2+1)x(2√5+) / (2√5-1)(2√5+1) 

= 6√10+3√2+2√5+1 / (2√5)² – (1)²

=6√10 +3√2+2√5+1 / 4×5-1

6√10+3√2+2√5+1 / 19

3√2+1 / 25-1 = 6√10+3√2+2√5+1 / 19

6. 3√2+2√3 / 3√2-2√3

Solution: 3√2+2√3 / 3√2- 2√3

= (3√2+1)x(3√2+2√3) / (3√2-2√3) (3√2+2√3)

=9×2+6√6+6√√6+4×3 / (3√2)²-(2√3)²

= 18+12√6+10 / 9×2-4×3

30+12√6 / 18-12

 6(5+2 5+2√3) / 6

=5+2√3.

3√2+2√3 / 3√2- 2√3  =5+2√3.

“WBBSE Class 10 Chapter 9 Quadratic Surd Exercise 9.2 solution guide”

7. Let us divide first by second and rationalize the divisor.

1. 3√2 + √5, √2+1

Solution : 3√2+√5 / √2+1

= (3√2+√5)x(√2-1) / (√2+1)x(√2-1)

= 3×2-3√2+√10-√5 /(√2)² – (1)²

= 6-3√2+√10-√5 / 2-1

=6-3√2+√10-√5 Ans.

3√2+√5 / √2+1 =6-3√2+√10-√5

2. 2√3-√2, √2-√3

Solution:

= 2√3-√2 – √2-√√3

=(2√3-√2)x(√2+√3) / (√2-√3)x (√2+√3)

= 2√6+2×3-2-√6 / (√2)-(√3)

= √6+6-2 / -1

= √6+4 / -1

=  -(√6+4)

2√3-√2 – √2-√√3 =  -(√6+4)

3. 3+√6, √3+√2

Solution:  3+√6  / √3+√2

= (√3+√6) (√3-√2) / (√3+√2) (√3-√2) 

= 3√3-3√2+√18-√12 / (√3)²-(√2)²

= 3√3-3√2+3√2-2√3 / 3-2

=3

3+√6  / √3+√2 =3

Question 8: 

1. 2√5+1 / √5+1 – 4√5-1 / √5-1

Solution: 2√5+1 / √5+1 – 4√5-1 / √5-1

= (2√5+1)(√5-1) – (4√5-1√5+1)  / √5+1 √5-1

= (2×5-2√5+√5-1)-(4×5+4√5-√5-1) / (√5)²-(1)²

= 10-√5-1-20-3√5+1 / 5-1

= -10-4√5 / 4 

= 2(-5-2√5) / 4

= (-5-2√5) / 2

2√5+1 / √5+1 – 4√5-1 / √5-1 = (-5-2√5) / 2

2. 8+3√2 / 3+√5 – 8-3√2 / 3-√5

Solution: 8+3√2 / 3+√5 – 8-3√2 / 3-√5

=(8+3√2 3-√5)-(8-3√2)(3 -+√5) / (3+√5) (3-√5)

=(24-8√5+9√2-3√10)-(24+8√5-9√2-3√10) / (3)²-(√5)²

=24-8√5+9√2-3√10-24-8√5+9√2+3√10 / 9-5

18√2-16√5 / 4

2(29√2-8√5) / 2

= 9√2-8√5 / 2

8+3√2 / 3+√5 – 8-3√2 / 3-√5 = 9√2-8√5 / 2

Question 9.  3√20+2√28+ √12 / 5√45+2√175+√75

Solution: 3√20+2√28+√12 / 5√45+2√175+√75

= 3x√2x2x5+2√2x2x7 +2√2x2x3 / 5√3x3x5 +2√5x5x7 + √5x5x3

= 6√5+4√7+4√3 / 15√5+10√7+5√3 

= 2(3√5+2√7+√3) / 5(3√5+2√7+√3)

= 2/5

3√20+2√28+√12 / 5√45+2√175+√75 = 2/5

“West Bengal Board Class 10 Maths Exercise 9.2 Quadratic Surd solutions”

Question 10. 5 / √2+√3 – 1/√2-√3

Solution: 5/√2+√3 – 1/√2-√3

= 5(√2-√3)-1(√2+√3) / (√2+√3)(√2-√3 )

= 5√2-5√3-√2-√3 / (√2)² – (√3)²

= 4√2-6√3 / 2-3

= 4√2-6√3 / -1

=6√3-4√2 

5/√2+√3 – 1/√2-√3 =6√3-4√2 

Question 11. If x =  √3+√2  let us calculate the simplified value of (x – 1/x) (x³ – 1/x³) and (x² – 1 / x²)

Solution: If x = √3+√2, find the values of (x – 1/x) (x³ – 1/x³) and (x² – 1 / x²)

1/x = 1 / √3-√2

∴ x – 1/x = (√3+√2)-(√3-√2)

=√3+ √2−√3+ √2 

=2√2

=(√3+√2)+(√3-√2)

=√3+ √2+√3-√2 

=2√3

Now, x³ + 1/x³

=(x + 1/x)³ – 3.x.1/x(x+1/x)

=(2√3)³-3×2√3 

=8×3√3-6√3

=24√3-6√3 

= 18√3

&  x²- 1/x² = (x + 1/x)(x – 1/x)

=2√3 ×2√2 

= 4√6

Leave a Comment