WBBSE Solutions For Class 10 Maths Chapter 9 Quadratic surd Exercise 9.2

WBBSE Solutions For Class 10 Maths Chapter 9 Quadratic surd Exercise 9.2

Question 1:

1. Let us find the product of 3  and √3.

Solution: 31/2 x  √3

= 31/2 x  31/2 = 31/2+1/2 = 31 = 3.

Read and Learn More WBBSE Solutions For Class 10 Maths

2. Let us write what should be multiplied by 2√2 to get the product 4.

Solution: Required Number = 4/2√2

= 2 x 2 /2√2

=2/√2

=2.√√2/√2.√2

=2√2/2

=√2

3. Let us calculate the product of 3√5 and 5√3. 

Solution: 3√5×5√3

=3×5 x√5 × √3 

= 15√15

The product of 3√5 and 5√3 = 15√15

4. If √6 x √15 =x√10, then let us write by calculating the value of x.

Solution: If √6 x √15 

= x√10

or, √90 = x√10

or, √9x√10=x.√10

∴ x = √9 = 3

The value of x = 3

WBBSE Solutions For Class 10 Maths Chapter 9 Quadratic surd Exercise 9.2

5. If (√5+ √3) (√5-√3) = 25-x2 is an equation, then let us write by calculating the value of x.

Solution: If (√5+√3) (√5-√3)

= 25 – x²

Or, (√5)²-(√3)²

= 25-x2

or, 2=25-x²

or, x² = 25-2 = 23

∴ x = ±√23

The value of x = ±√23

Question 2:

1. √7 x √14

Solution: √7x√14 = √7x√7×2 = √7× √7×√2

= 7√2

√7x√14 = 7√2

2. √12 x 2√3

Solution: √12×2√3 = √2×2×3×2√3 = 2√3×2√3 =2x2x√3.√3

= 4 x 3 

=12

√12×2√3 =12

3. √5 x √15 x √3

Solution: √5x√15x√3

= √15x√15 √15×15

= 15

√5x√15x√3 = 15

4. √2x (3+ √5)

Solution: √2x(3+√5) = 3√2+√2 × √5 = 3√2+√10

5. (√2+ √3) (√2 – √3)

Solution: (√2+√3)(√2-√3) = (√2)-(√3) 2-3-1

6. (2√3 +3√2) (4√2 + √5)

Solution:

(2√3+3√2) (4√2+√5)

=8√6+2√15+12√4+3√10

=8√6+2√15+12.2+3√10

=8√6+2√15 +24+3√10

(2√3+3√2) (4√2+√5) =8√6+2√15 +24+3√10

7. (√3+1) (√3-1) (2-√3) (4+2√3)

Solution : (√3+1)(√3-1) (2-√3) (4+2√3)

= {(√3)2 -(1)2} (2−√3) (4+2√3)· 

=(3-2) (2-√3) × 2(2+√3). 

=2×2×(2-√3) (2+√3) 

= 4x {(2)² – (√3)²}

= 4x (4-3)

= 4 × 1 

= 4 

(√3+1)(√3-1) (2-√3) (4+2√3) = 4 

Question 3:

1. If √x is the rationalizing factor of √5, let us write by calculating the smallest value of x (where x is an integer).

Solution: x = √5

2. Let us calculate the value of 3 √2 ÷ 3.

Solution: 3√2 ÷ 3 

= 3√2/3

=√2

3. Let us write which smallest factor we should multiply with the denominator to rationalize the denominator of 7 ÷ √48.

Solution: 7÷ √48 

= 7/√48

= 7/√4x4x3

= 7/4√3

Required smallest factor = √3

4. Let us calculate the rationalizing factor of (√5+2) which is also its conjugate surd. 

Solution: (√5+2)

The conjugate surd of (√5+2) is 2- √5.

5. If (√5+ √2) ++ √7 = 1/7(√35 + a), let us calculate the value of a.

Solution: (√5+√2) ++√7 = 1/7(√35+a)

If √5+ √2 /7 =√35+a/7

=(√5+√2)√7 / √7 x √7 = √35+a/7

Or, √35+ √14/7 = √35+a/7

Or, √35+ √14 = √35+a

∴ a = √14

6. Let us write a rationalizing factor of 5/√3-2 which is not its conjugate surd.

Solution: 5/√3-2

The rationalizing factor of the denominator of 5/√3-2 is (√3+2).

Question 4. Let us write the conjugate surds of mixed quadratic surds (9-43) and (-2 -√7). 

Solution: Conjugate surd of (9-4√5) is (9+4√5)

& conjugate surd of (-2-√7) is (-2+√7).

5. Let us write two conjugate surds of each of the mixed quadratic surds given below.

1. √5+ √2

Solution: √5+√2

Two conjugate surds of √5+ √2 are (√5-√2) & (√5+√2).

2. 13+ √6

Solution: 13+ √6

Two conjugate surds of 13+ √6 are (13-√6) & (-13+ √6). 

3. √8-3

Solution: √8-3

Two conjugate surds of √8-3 are (- √8-3) & (√8+3).

4. √17-√15

Solution: √17-√15

Two conjugate surds of √17-√15 are (√17 + √15) & (-√17 – √15).

6. Let us rationalize the denominators of the following surds 

1. 2√3+3√2 / √6

Solution: 2√3+3√2/√6 

=(2√3+3√2) x √6/ √6 x √6 

= 2√18+3√12/6

=2×3√2+3×2√3 / 6

=6√2+6√3 / 6

= 6(√2+√3)/6

=√2 + √3

2√3+3√2/√6 =√2 + √3

2. 2-1+6 / √5

Solution: √2-1+√6/√5

 = (√2-1+ √6)x√5 / √5 x √5

= √10-√5+√30 / 5

√2-1+√6/√5 = √10-√5+√30 / 5

3. √3-1 / √3+1

Solution: √3-1 / √3+1

= (√3+1)(√3+1) / (√3-1)x(√3+1)

= 3+1+2√3 / 3-1

=4+2√3 / 2

=2(2+√3) / 2

= (2 + √3) 

√3-1 / √3+1 = (2 + √3) 

4. 3+√5 / √7-√3

Solution: 3+√5 / √7-√3 

= (3+√5) (√7 + √3) / (√7-√3) (√7 + √3) 

= 3√7+√35+3√3+ √15 / (7)²-(3)²

= 3√7+√35+3√3+ √15 / 7-3

= 3√7+√35+3√3+√15 / 4

3+√5 / √7-√3  = 3√7+√35+3√3+√15 / 4

5. 3√2+1 / 2√5-1

Solution: 3√2+1 / 25-1

(3√2+1)x(2√5+) / (2√5-1)(2√5+1) 

= 6√10+3√2+2√5+1 / (2√5)² – (1)²

=6√10 +3√2+2√5+1 / 4×5-1

6√10+3√2+2√5+1 / 19

3√2+1 / 25-1 = 6√10+3√2+2√5+1 / 19

6. 3√2+2√3 / 3√2-2√3

Solution: 3√2+2√3 / 3√2- 2√3

= (3√2+1)x(3√2+2√3) / (3√2-2√3) (3√2+2√3)

=9×2+6√6+6√√6+4×3 / (3√2)²-(2√3)²

= 18+12√6+10 / 9×2-4×3

30+12√6 / 18-12

 6(5+2 5+2√3) / 6

=5+2√3.

3√2+2√3 / 3√2- 2√3  =5+2√3.

7. Let us divide first by second and rationalize the divisor.

1. 3√2 + √5, √2+1

Solution : 3√2+√5 / √2+1

= (3√2+√5)x(√2-1) / (√2+1)x(√2-1)

= 3×2-3√2+√10-√5 /(√2)² – (1)²

= 6-3√2+√10-√5 / 2-1

=6-3√2+√10-√5 Ans.

3√2+√5 / √2+1 =6-3√2+√10-√5

2. 2√3-√2, √2-√3

Solution:

= 2√3-√2 – √2-√√3

=(2√3-√2)x(√2+√3) / (√2-√3)x (√2+√3)

= 2√6+2×3-2-√6 / (√2)-(√3)

= √6+6-2 / -1

= √6+4 / -1

=  -(√6+4)

2√3-√2 – √2-√√3 =  -(√6+4)

3. 3+√6, √3+√2

Solution:  3+√6  / √3+√2

= (√3+√6) (√3-√2) / (√3+√2) (√3-√2) 

= 3√3-3√2+√18-√12 / (√3)²-(√2)²

= 3√3-3√2+3√2-2√3 / 3-2

=3

3+√6  / √3+√2 =3

Question 8: 

1. 2√5+1 / √5+1 – 4√5-1 / √5-1

Solution: 2√5+1 / √5+1 – 4√5-1 / √5-1

= (2√5+1)(√5-1) – (4√5-1√5+1)  / √5+1 √5-1

= (2×5-2√5+√5-1)-(4×5+4√5-√5-1) / (√5)²-(1)²

= 10-√5-1-20-3√5+1 / 5-1

= -10-4√5 / 4 

= 2(-5-2√5) / 4

= (-5-2√5) / 2

2√5+1 / √5+1 – 4√5-1 / √5-1 = (-5-2√5) / 2

2. 8+3√2 / 3+√5 – 8-3√2 / 3-√5

Solution: 8+3√2 / 3+√5 – 8-3√2 / 3-√5

=(8+3√2 3-√5)-(8-3√2)(3 -+√5) / (3+√5) (3-√5)

=(24-8√5+9√2-3√10)-(24+8√5-9√2-3√10) / (3)²-(√5)²

=24-8√5+9√2-3√10-24-8√5+9√2+3√10 / 9-5

18√2-16√5 / 4

2(29√2-8√5) / 2

= 9√2-8√5 / 2

8+3√2 / 3+√5 – 8-3√2 / 3-√5 = 9√2-8√5 / 2

Question 9.  3√20+2√28+ √12 / 5√45+2√175+√75

Solution: 3√20+2√28+√12 / 5√45+2√175+√75

= 3x√2x2x5+2√2x2x7 +2√2x2x3 / 5√3x3x5 +2√5x5x7 + √5x5x3

= 6√5+4√7+4√3 / 15√5+10√7+5√3 

= 2(3√5+2√7+√3) / 5(3√5+2√7+√3)

= 2/5

3√20+2√28+√12 / 5√45+2√175+√75 = 2/5

Question 10. 5 / √2+√3 – 1/√2-√3

Solution: 5/√2+√3 – 1/√2-√3

= 5(√2-√3)-1(√2+√3) / (√2+√3)(√2-√3 )

= 5√2-5√3-√2-√3 / (√2)² – (√3)²

= 4√2-6√3 / 2-3

= 4√2-6√3 / -1

=6√3-4√2 

5/√2+√3 – 1/√2-√3 =6√3-4√2 

Question 11. If x =  √3+√2  let us calculate the simplified value of (x – 1/x) (x³ – 1/x³) and (x² – 1 / x²)

Solution: If x = √3+√2, find the values of (x – 1/x) (x³ – 1/x³) and (x² – 1 / x²)

1/x = 1 / √3-√2

∴ x – 1/x = (√3+√2)-(√3-√2)

=√3+ √2−√3+ √2 

=2√2

=(√3+√2)+(√3-√2)

=√3+ √2+√3-√2 

=2√3

Now, x³ + 1/x³

=(x + 1/x)³ – 3.x.1/x(x+1/x)

=(2√3)³-3×2√3 

=8×3√3-6√3

=24√3-6√3 

= 18√3

&  x²- 1/x² = (x + 1/x)(x – 1/x)

=2√3 ×2√2 

= 4√6

Leave a Comment