WBBSE Solutions For Class 7 Maths Algebra Chapter 1 Revision Of Old Lesson Exercise 1 Solved Problems

Class 7 Math Solution WBBSE Algebra Chapter 1 Revision Of Old Lesson Exercise 1 Solved Problems

Question 1. Choose the correct answer

1. The sum of 9 and (-y) is

1. y – 9
2. 9+ y
3. 9-y
4. None of these

Solution: Sum of 9 and (- y) is 9 + (− y) = 9-y

So the correct answer is 3. 9-y

2. What must be added to (-17) to get 12?

1. -5
2. 5
3. -29
4. 29

Solution: The number which is added to (-17) to get 12 is {12 – (-17)} = 12 + 17 = 29

So the correct answer is 4. 29

Read and Learn More WBBSE Solutions for Class 7 Maths

3. The value of (-2)2 x (-3)2 x (-5) is

1. 180
2. -180
3. 120
4. -120

Solution: (-2)2 × (-3)2× (-5)
= (-2) x (-2) × (-3) x (-3) x (-5)
= 4 × 9 × (-5)
= 36 x (-5)
= – 180
(-2)2 × (-3)2× (-5) = – 180

So the correct answer is 2. -180

Wbbse Class 7 Maths Solutions

Question 2. Write ‘true’ or ‘false

1. Profit of -10 rupees mean that loss of 10 rupees.

Solution: The statement is true.

2. If the length and breadth of a rectangle are x and y respectively, its semi-perimeter is 2(x + y).

Solution:

Given

⇒ If the length and breadth of a rectangle are x and y respectively

⇒ Semi-perimeter is (x + y),

⇒ So the statement is false.

3. The difference of the two numbers is x. If the greater number is y, then the least number is (x + y).

Solution:

Given

The difference of the two numbers is x. If the greater number is y,

The least number is (y-x)

So the statement is false.

Question 3. Fill in the blanks

1. The value of (-5)2 x (-7) x (-6) is

Solution: (-5)2 × (-7) × (-6)
= 25 × 42
= 1050

The value of (-5)2 x (-7) x (-6)  = 1050

2. If perimeter of a square is x cm, then its area is _____ Sq. cm.

Solution: The perimeter of the square is x cm; the length of each side is \(\frac{x}{4}\) cm

Area is \(\left(\frac{x}{4}\right)^2\) sq. cm

= \(\frac{x^2}{16}\)

3. The absolute value of (-3) is _____

Solution: 3

Wbbse Class 7 Maths Solutions

Question 4.  Write in language the following expressions

1. \(\frac{x}{4}-3\)

2. WBBSE Solutions For Class 7 Maths Algebra Chapter 1 Revision Of Old Lesson

3. 3p-2

Solution:

1. \(\frac{x}{4}-3\)

Three less than one fourth of x.

2. WBBSE Solutions For Class 7 Maths Algebra Chapter 1 Revision Of Old Lesson

a is not less than four.

3. 3p-2

2 is less three times of p

Question 5. Form the algebraic expression with signs and symbols

1. 5 is subtracted from 4 times y
2. 4 is not less than x
3. x is not equal to y
4. sum of five times y and 6.

Solution:

1. 4y-5
2. WBBSE Solutions For Class 7 Maths Algebra Chapter 1 Revision Of Old Lesson
3. x ≠ y
4. 5y + 6

Question 6. Subtract using concept of opposite number 

1. (-13) – (-16)
2. (+12) – (-15)
3. (-17) – (+18)
4. (+10) – (+15)

Solution:

1. (-13) – (-16)
= (-13) + (opposite number of -16)
= (-13) + (+16)
= +3

2. (+12) – (-15)
= (+12) + (opposite number -15)
= (+12) + (+15)
= + 27

3. (-17) – (+18)
= (-17) + (opposite number of +18)
= (-17) + (-18)
=-35

4. (+10) – (+15)
= (+10) + (opposite number of +15)
= (+10) + (-15)
= -5

Wbbse Class 7 Maths Solutions

Question 7. Simplify 10 -(opposite number of – 25) – (opposite number of +12) – (opposite number of -18) – (-6)

Solution: = 10 – (+25) – (-12) – (+18) – (-6)
= 10 – 25+ 12 – 18+ 6
= (10+ 12 + 6) – (25 +18)
= 28-43
= – 15

Question 8. Add the following on number line

1. (-7), (+2)
2. (+4), (-8)

Solution:

1.

WBBSE Solutions For Class 7 Maths Algebra Chapter 1 Revision Of Old Lesson Q8-1

 

(-7) + (-2) = -5

2.

WBBSE Solutions For Class 7 Maths Algebra Chapter 1 Revision Of Old Lesson Q8-2

 

(+4) + (-8) = -4

Wbbse Class 7 Maths Solutions

Question 9. Verify associative property of addition (-5), (3), (+2)

Solution: {(-5)+(-3)}+(+2)
= (-8) + (+2)
= (-6)

(-5)+ {(-3) + (+2)}
= (-5)+(-1)
=-6

So, {(-5)+(-3)} + (+2) = (-5) + {(-3) + (+2)}

Question 10. Find what must be added to the first to get the second 

1. (-15), (-10)
2. (+6), (-18)

Solution:

1. The number which added to the (-15) to get (-10) is
(-10) (-15) = (-10) + 15 +5

2. The required number is (-18) (+6)=-18 -6 =-24

 

Class 7 Math Solution WBBSE Algebraic Formula

Algebraic Formula Exercise 12.1

Question 1. To find the square of the algebraic expressions given below using (a + b)² = (a² + 2ab+ b²) let’s find what has to be substituted for a and b in each case, and hence find their squares 

Let’s substitute a = x and b = 3.

1.  x + 3
Solution :

(x + 3)² = (x)² +2.x.3+ (3)²

= x² +6x + 9

(x + 3)² = x² +6x + 9

2. p + 9
Solution:

(p+ 9)²= (p)² +2.p.9+ (9)²

= p²+ 18p + 81

(p+ 9)² = p²+ 18p + 81

3. 6 – x
Solution :

(6-x)² = (6)² -2.6.x + (x)²

= 36-12x +x²

(6-x)² = 36-12x +x²

4. y-2
Solution :

(y-2)² = (y)² -2.y.2 + (2)²

= y² -4y + 4

(y-2)² = y² -4y + 4

5. mn + I²
Solution :

(mn+l²)² = (mn)²+2.mn.l²+(l²)²

= m²n²+ 2mnl²+ l4

(mn+l²)² = m²n²+ 2mnl²+ l4

6. 6x + 3
Solution :

(6x + 3)² = (6x)² + 2.6x.3 + (3)²

= 36x² + 36x + 9

(6x + 3)² = 36x² + 36x + 9

7. 4x + 5y
Solution:

(4x + 5y)² = (4x)²+2.4x.5y + (5y)²

= 16x² + 40xy + 25y²

(4x + 5y)² = 16x² + 40xy + 25y²

8. pqc + 2
Solution :

(pqc + 2)² = (pqc)² + 2.pqc.2 + (2)²

= p²c²q² + 4pqc + 4

(pqc + 2)² = p²c²q² + 4pqc + 4

9. \(\left(\frac{5}{k}+3\right)\)
Solution:

⇒ \(\left(\frac{5}{k}+3\right)^2\)

⇒ \(\left(\frac{5}{k}\right)^2+2 \cdot \frac{5}{k} \cdot 3+(3)^2\)

= \(\frac{25}{k^2}+\frac{30}{k}+9\)

\(\left(\frac{5}{k}+3\right)^2\)= \(\frac{25}{k^2}+\frac{30}{k}+9\)

10. \(\left(\frac{3}{r}+\frac{2}{p}\right)\)
Solution:

⇒ \(\left(\frac{3}{r}+\frac{2}{p}\right)^2\)

= \(\left(\frac{3}{r}\right)^2+2 \cdot \frac{3}{r} \cdot \frac{2}{p}+\left(\frac{2}{p}\right)^2\)

= \(\frac{9}{r^2}+\frac{12}{r p}+\frac{4}{p^2}\)

\(\left(\frac{3}{r}+\frac{2}{p}\right)^2\) = \(\frac{9}{r^2}+\frac{12}{r p}+\frac{4}{p^2}\)

11. \(\frac{p}{q}+\frac{m}{n}\)
Solution:

⇒ \(\left(\frac{p}{q}+\frac{m}{n}\right)^2\)

= \(\left(\frac{p}{q}\right)^2+2 \cdot \frac{p}{q} \cdot \frac{m}{n}+\left(\frac{m}{n}\right)^2\)

= \(\frac{p^2}{q^2}+\frac{2 p m}{q n}+\frac{m^2}{n^2}\)

\(\left(\frac{p}{q}+\frac{m}{n}\right)^2\) = \(\frac{p^2}{q^2}+\frac{2 p m}{q n}+\frac{m^2}{n^2}\)

12. m² +n²
Solution :

= (m² +n²)² = (m² )²+ 2.m².n²+(n²)²

= m4+2m²n²+n4

(m² +n²)² = m4+2m²n²+n4

13. 3xy + 4z
Solution:

= (3xy + 4z)2 = (3xy)2 +2.3xy.4z+ (4z)2

= 9x²y² +24 xyz+16z²

(3xy + 4z)2 = 9x²y² +24 xyz+16z²

14. 2x + 3y + z
Solution :

= (2x + 3y + z)2

= (2x)2 + (3y)2+ (z)2 + 2.2x.3y+ 2.2x.z + 2.3y.z

= 4x2 + 9y2 + z2 +12xy + 4xz + 6yz

(2x + 3y + z)2 = 4×2 + 9y2 + z2 +12xy + 4xz + 6yz

15. 102
Solution:

= (102)2 = (100 + 2)2

= (100) 2+ 2.1 00.2+(2)2

= 10000 + 400 + 4 = 10404

(102)2 = (100 + 2)2 = 10404

16. p + q + r + s
Solution :

= (p+ q+.r + s)2

= (p)2 + (q)2 +(r)2 + (s)2+ 2pq+ 2pr + 2ps+ 2qr+ 2qs+ 2rs

(p+ q+.r + s)2 = (p)2 + (q)2 +(r)2 + (s)2+ 2pq+ 2pr + 2ps+ 2qr+ 2qs+ 2rs

Class 7 Math Solution WBBSE Algebraic Formula Exercise 12.2

To find the squares of the algebraic expressions given below, using (a- b)2 = (a)2 -2ab + b2 what has to be substituted for a and b in, and hence let’s find the squares.

1. x-5
Solution:

(x-5)² = (x)-2.x.5+ (5)2

= x2 -10x + 25

(x-5)² = x2 -10x + 25

2. m – n
Solution :

(m – n)² = (m)² -2.m.n+ (n)2

= m2 -2mn+ n2

(m – n)² = m2 -2mn+ n2

3. 10- x
Solution:

(10-x)2 = (10)² -2.10.x + (x)²

= 100-20x + x²

(10-x)= 100-20x + x²

4. x +y
Solution:

(x+y)² = (x)2 +2.x.y +(y)

= x² + 2xy + y²

(x+y)²  = x² + 2xy + y²

5. 3x – y
Solution :

(3x-y)²  = (3x)²  – 2.3x.y +(y)²

= 9x²  – 6xy + y²

(3x-y)²  = 9x²  – 6xy + y²

6. 4m + 2
Solution:

(4m + 2)²   = (4m)²  +2.4m.2+ (2)2

= 16m² + 16m + 4

(4m + 2)²  = 16m² + 16m + 4

7. 5y + x
Solution:

(5y + x)² = (5y)² +2.5y.x +(x)²

= 25y² +10xy + x²

(5y + x)² = 25y² +10xy + x²

8. ce-fg
Solution:

(ce-fg)² = (ce)² -2.ce.fg+ (fg)²

= c² e² -2cefg + f² g²

(ce-fg)²  = c² e² -2cefg + f² g²

9.  \(p x-\frac{1}{2}\)
Solution:

⇒ \(p x-\frac{1}{2}\)

= (px)² – 2. px \(\frac{1}{2}\) + \(\left(\frac{1}{2}\right)^2\)

= p2x2 – px + \(\frac{1}{4}\)

\(p x-\frac{1}{2}\) = p2x2 – px + \(\frac{1}{4}\)

10. p + q – r
Solution :

(p +q-r)2

= (p+q)²- 2+(p+q). r +(r)2

= p2 + 2pq+ q2+ 2pr- 2qr + r2

= p2 +q2 + r2 – 2pq+ 2pr-2qr

(p +q-r)= p2 +q2 + r2 – 2pq+ 2pr-2qr

11. p – q + r
Solution:

(p-q + r)2 = (p-q)²+ 2.(p-q).r + (r)2

= p2 – 2pq + q2 + 2pr- 2qr + r2

= p2 + q2 + r2 -2pq+ 2pr-2qr

(p-q + r)2  = p2 + q2 + r2 -2pq+ 2pr-2qr

12. \(\frac{2 x}{3}-\frac{3 y}{4}\)

⇒ \(\left(\frac{2 x}{3}-\frac{3 y}{4}\right)^2\)

= \(\left(\frac{2 x}{3}\right)^2-2 \cdot \frac{2 x}{3} \cdot \frac{3 y}{4}+\left(\frac{3 y}{4}\right)^2\)

= \(\frac{4 x^2}{9}-x y+\frac{9 y^2}{16}\)

\(\left(\frac{2 x}{3}-\frac{3 y}{4}\right)^2\) = \(\frac{4 x^2}{9}-x y+\frac{9 y^2}{16}\)

13. 3m³ – 4n³
Solution :

(3m³-4n³)² = (3m³)² -2.3m³.4n³ +(4n³)²

= 9m6 -24m³n³ +16n6

(3m³-4n³)² = 9m6 -24m³n³ +16n6

14. 2x + y – z
Solution :

(2x + y-z)² = (2x + y)²- 2.(2x + y). z + (z)²

= 4x² +2.2x.y + y² -4xz-2yz + z²

= 4x² +y² +z² +4xy-4xz-2yz

(2x + y-z)² = 4x² +y² +z² +4xy-4xz-2yz

15. 999
Solution :

(1000-1)² = (1000)² -2.1000.1 + (1)²

= 1000000-2000 + 1

= 998001

(1000-1)² = 998001

14. p + q – r – s
Solution :

(p + q-r-s)²

= {(p+q)-(r+ s)}²

= p+ q²-2.(p+ q).(r+ s)+(r+ s)²

= p² + 2pq + q² – 2pr- 2ps- 2qr + 2qs + r² + 2rs + s²

= p² + q² + r² + s² + 2pq- 2pr- 2ps- 2qr + 2qs + 2rs

(p + q-r-s)² = p² + q² + r² + s² + 2pq- 2pr- 2ps- 2qr + 2qs + 2rs

WB Class 7 Math Solution Algebraic Formula Exercise 12.3

Question 1. Which one of the following is equal to the product of (a + b) x (a +b)

  1. a² + b²
  2. (a + b)²
  3. 2(a + b)
  4. 4ab

Solution: 2. (a + b)²

(a + b) (a + b) = a² + ab + ab + b² = a² + 2ab + b² = (a + b)²

Question 2. Let’s find, which of the following will be the value for k satisfying the identity (x + 7)² = x² + 14x + k.

  1. 14
  2. 49
  3. 7
  4. None of these

Solution: 2. 49

(x + 7)² = x²+2.x.7+ (7)² = x² +14x + 49

Question 3. Which one of the following algebraic expressions must be added to a² + b² so that the sum is a perfect square? Let’s find.

  1. 4ab
  2. – 4ab
  3. 2ab or – 2ab
  4. a²+b²+2ab = (a + b)²

Solution:  3. 2ab or – 2ab

a²+b²+2ab = (a + b)²

a² + b² – 2ab = (a – b)²

Question 4. If (a+ b)² = a² +6a + 9, let’s find, which of the following is the positive value for b.

  1. 9
  2. 6
  3. 3
  4. -3

Solution: 3. 3

(a + b)² = a² + 6a + 9

= a²+2.a.3 + (3)²

Question 5. Let’s find, which one of the following numbers when added to \(x^2+\frac{1}{4} x\) makes it a perfect square

  1. \(\frac{1}{64}\)
  2. – \(\frac{1}{64}\)
  3. \(\frac{1}{8}\)
  4. None of these

Solution: \(\frac{1}{64}\)

= \(x^2+\frac{1}{4} x\)

= \(x^2+2 \cdot x \frac{1}{8}+\left(\frac{1}{8}\right)^2-\frac{1}{64}\)

= \(\frac{1}{64}\)

Question 6.

1. Let’s find, for which values of k, will the expression c² + kc + \(\frac{1}{9}\) be a perfect square.
Solution:

c²  + kc + \(\frac{1}{9}\)

= \((c)^2 \pm 2 \cdot c \cdot \frac{1}{3}+\left(\frac{1}{3}\right)^2\)

= \(c^2 \pm \frac{2}{3} c+\left(\frac{1}{3}\right)^2\)

K = ± \(\frac{2}{3}\)

2. Let’s find what must be added or subtracted from \(9 p^2+\frac{1}{9 p^2}\) make it a perfect square.
Solution:

⇒ \(9 p^2+\frac{1}{9 p^2}\)

⇒ \((3 p)^2+\left(\frac{1}{3 p}\right)^2 \pm 2.3 p \cdot \frac{1}{3 p}\)

⇒ \((3 p)^2+\left(\frac{1}{3 p}\right)^2 \pm 2\)

⇒ \(\left(3 p \pm \frac{1}{3 p}\right)^2\)

= (2) or (-2)

3. If (x-y) = 4-4y + y² then let’s find the value of x.
Solution :

(x- y) = 4- 4y + y²

= (x- y)² = (x)² – 2xy + (y)

∴ x²= 4

∴  x = 2

4. If (c-3) = c² + kc + 9 , let’s find the value of k.
Solution :

(c-3) = c²+kc + 9 = (c)²-2.c.3+ (3)² .

∴ K = – 6

Question 7. Let’s simplify by using a formula.

1. (2q- 3z)²- 2 (2q- 3z)(q- 3z)+ (q- 3z)²
Solution:

= (2q- 3z)² – 2 (2q- 3z)(q- 3z)+ (q- 3z)²

= {(2q- 3z)-(q- 3z)}²

= (2q- 3z- q + 3z)²

= q²

2. (3p+ 2q- 4r)² + 2(3p + 2q- 4r)(4r- 2p- q) + (4r- 2p- q)²
Solution :

= (3p+ 2q-4r)² +2(3p+ 2q-4r)(4r-2p-q)+(4r-2p-q)²

= {(3p + 2q- 4r) + (4r- 2p- q))²

= (3p+ 2q- 4r + 4r- 2p- q)²

= (p+ q)²

= p² + 2pq + q²

Question 8. Let’s express the following as a perfect square.

1.  16a ² -40ac+ 25c²
Solution :

16a ² – 40ac + 25c².

= (4a)² – 2. 4a .5c +(5c)²

= (4a -5c)²

16a ² – 40ac + 25c². = (4a -5c)²

2. 4p²- 2p + \(\frac{1}{4}\)
Solution:

4p²- 2p +  \(\frac{1}{4}\)

= (2p)² – 2. 2p. \(\frac{1}{2}+\left(\frac{1}{2}\right)^2\)

= \(\left(2 p-\frac{1}{2}\right)^2\)

4p²- 2p +  \(\frac{1}{4}\) = \(\left(2 p-\frac{1}{2}\right)^2\)

3. \(1+\frac{4}{a}+\frac{4}{a^2}\)
Solution:

⇒ \(1+\frac{4}{a}+\frac{4}{a^2}\)

⇒  \((1)^2+2 \cdot 1 \cdot \frac{2}{a}+\left(\frac{2}{a}\right)^2\)

⇒  \(\left(1+\frac{2}{a}\right)^2\)

\(1+\frac{4}{a}+\frac{4}{a^2}\) = \(\left(1+\frac{2}{a}\right)^2\)

4. 9a²+ 24ab + I6b²
Solution:

9a² +24ab+ I6b²

= (3a)² +2.3a.4b + (4b)²

= (3a + 4b)²

9a² +24ab+ I6b² = (3a + 4b)²

Question 9. Let’s express the following as a perfect square and hence find the values.

1.  64a² +16a +1 When 3 = 1
Solution:

= 64a²+ 16a +1

= (8a)² + 2.8a.1 + (1)²

= (8a + 1)²

= (8a + 1+ 1)²

Putting a = 1

= (8+ 1)²

= (9)²

= 81

64a²+ 16a +1 = 81

2. 25a² -30ab + 9b² When a = 3&b = 2
Solution :

= 25a² -30ab + 9b²

= (5a)² – 2. 5a. 3b + (3b)²

= (5a- 3b)²

= (5 × 3-3 × 2)² Putting a = 3, b = 2

= (15-6)² = (9)² =81

25a² -30ab + 9b² =81

3. \(64-\frac{16}{p}+\frac{1}{p^2}\) When p = -1
Solution:

⇒ \(64-\frac{16}{p}+\frac{1}{p^2}\)

= \((8)^2-2 \cdot 8 \cdot \frac{1}{p}+\left(\frac{1}{p}\right)^2\)

= \(\left(8-\frac{1}{p}\right)^2\)

= \(\left(8-\frac{1}{-1}\right)^2\)

Putting p = -1

= (8+1)²

= (9)²= 81

\(64-\frac{16}{p}+\frac{1}{p^2}\) = 81

4. p²q² + 10pqr + 25r² When p = 2, q =-1 and r= 3
Solution:

= p²q² +I0pqr + 25r²

= (pq)² +2.pq.r+ (5r)²

= (pq + 5r)²

= {2.(-1)+ 5.3}²

= (-2+ 15)²

= (13)² =169

p²q² +I0pqr + 25r² =169

Question 10. Let’s apply, (a + b)² +(a-b)² = 2(a²+b²) Or,  (a + b)² – (a- b)² = 4ab Or, ab = \(\left(\frac{a+b}{2}\right)^2-\left(\frac{a-b}{2}\right)^2\) to find the following

1. Let’s find st and (s² + t² ) when s + 1 = 12 and s – 1 = 8
Solution:

st = \(\left(\frac{s+t}{2}\right)^2-\left(\frac{s-t}{2}\right)^2\)

= \(\left(\frac{12}{2}\right)^2-\left(\frac{8}{2}\right)^2\)

= (6)²- (4)²

= 36-16= 20

(s² + t²) = (s+t)²+(s-t)²

= (12)² +(8)

= 144 + 64

= 208

s²+t² = \(\frac{208}{2}\)

= 104

2. Let’s find 8xy(x² + y²) when (x + y) = 5 and (x – y) = 5
Solution :

8xy(x² + y²)

= 4xy × 2(x² +y²)

= {(x+ y)² -(x-y)²}× {(x-y)²+ (x-y)²}

= {(5)²- (1)² } × (5)²- (1)² }

= (25-1) (25 + 1)

=(25)²-(1)²

= 625 – 1 = 624

8xy(x² + y²) = 624

3. Let’s find when \(\frac{x^2+y^2}{2 x v}\) = 9 and (x – y) = 5
Solution:

⇒\(\frac{x^2+y^2}{2 x v}\)

= \(\frac{(x+y)^2+(x-y)^2}{2} \times \frac{1 \times 2}{4 x y}\)

= \(\frac{(x+y)^2+(x-y)^2}{(x+y)^2-(x-y)^2}\)

= \(\frac{(9)^2+(5)^2}{(9)^2-(5)^2}\)‘

= \(\frac{81+25}{81-25}\)

= \(\frac{106}{56}\)

= \(\frac{53}{28}\)

4. Let’s express 36 as the difference of two squares[ Hints, 36= 4 × 9  \(\left(\frac{4+9}{2}\right)^2-\left(\frac{4-9}{2}\right)\)
Solution:

36 = 4 × 9

= \(\left(\frac{4+9}{2}\right)^2-\left(\frac{4-9}{2}\right)^2\)

5. Let’s express 44 as the difference of two squares.
Solution :

44 = 11 × 4

⇒ \(\left(\frac{11+4}{2}\right)^2-\left(\frac{11-4}{2}\right)^2\)

= \(\frac{(15)^2}{4}-\frac{(7)^2}{4}\)

= \(\frac{225}{4}-\frac{49}{4}\)

= \(\frac{225-49}{4}\)

6. Let’s express 8x² + 50y² as the sum of two squares.
Solution:

8x² + 50y²

= 2 × (4x² + 25y²) = 4x² + l0xy+ 25y²+ 4x² – 10xy + 25y²

= (2x +5y)² + (2x- 5y)²

8x² + 50y² = (2x +5y)² + (2x- 5y)²

7. Let’s express x as the difference of.two squares.
Solution :

= x = x . 1

⇒ \(\left(\frac{x+1}{2}\right)^2-\left(\frac{x-1}{2}\right)^2\)

WB Class 7 Math Solution Algebraic Formula Exercise12.4

Question 1. Using the identity (x+ a) (x + b) = x² + (a + b) x + ab, let’s find the product of the following algebraic expressions.

1. (x + 7) (x + 1)
Solution :

(x + 7) (x + 1)

= x² +(7 +1)x + 7

= x² + 8x + 7

2. (x – 8) (x – 2)
Solution :

(x – 8) (x – 2)

= x² +(-8- 2)x + (-8)(-2)

= x²-10x + 16

3. (x + 9) (x – 6)
Solution :

(x + 9) (x – 6)

= x² + (9- 6)x+ (9)(-6)

= x²+ 3x – 54

4.(2x+1)(2x-1)
Solution :

(2x +1 ) (2x – 1 )

= (2x)² + (1- 1)2x + (1)(-1)

= 4x²- 1

5. (xy – 4) (xy + 2)
Solution :

(xy – 4) (xy + 2)

= (xy)²+(-4 + 1)xy + (-4)(+2)

= x²y²- 2xy-8

6. (a² + 5) (a²- 4)
Solution :

(a² +5) (a² -4)

= (a²)² + (5- 4)a²+ + (5)(-4)

= a4+a²-20

Question  2. Using the formula, let’s show that 

1. (2x + 3y)² – (2x- 3y)² = 24xy
Solution :

(2x + 3y)²- (2x- 3y)²

= (2x + 3y + 2x- 3y) (2x + 3y- 2x + 3y)

= 4x × 6y

= 24xy RHS.

2. (a+ 2b)² +(a- 2b)²=2 (a² + 4b²)
Solution :

(a + 2b)² +(a- 2b)²

= a² + 4ab + 4b²+ a²- 4ab + 4b²

= 2a² + 8b²

= 2(a² + 4b²) = RHS.

3. (l +m)²= (l-m)²+4lm
Solution :

LHS = (l+ m)² = l²+2 lm + m²

= I² – 2lm + m² + 4lm

= (l- m)² + 4lm = RHS.

4. (2p- q)² = (2p + q)²- 8pq
Solution:

= (2p-q)² = (2p)² -2.2p.q + (q)²

= (2p) -2.2p.q + (q)²- 8pq

= (2p-q)² – 8pq

5. (3m + 4n)² = (3m- 4n)² + 48mn
Solution:

(3m + 4n)²

= (3m)² + 2.3m. 4n + (4n)²

= (3m)² -2.3m.4n +(4n)²+ 48mn

=  (3m- 4n)² + 48mn = R.H.S.

6. (6x + 7y)²- 84xy = 36x² + 49.y²
Solution :

(6x+ 7y)² – 84xy

84xy = 36x² + 2.6x.7y + 49 y² – 84xy

= 36x² -2.6x.7y + 9y² -84xy

= 36x² + 49y² = R.H.S.

7. (3a + 4b)² + 24 ab = 9a² +16b²
Solution:

= (3 – 4b)² +24ab

= (3a –  4b)²+ 24ab = 9a²- 2.3a.4b+(4b)² + 24ab

= 9a²- 24ab + 16b² + 24ab

= 9a² + 16 b²

(3a + 4b)² + 24 ab = 9a² +16b²

8. \(\left(2 a+\frac{1}{a}\right)^2=\left(2 a-\frac{1}{a}\right)^2+8\)
Solution:

⇒  \(\left(2 a+\frac{1}{a}\right)^2\)

= \((2 a)^2+2 \cdot 2 a \cdot \frac{1}{a}+\left(\frac{1}{a}\right)^2\)

= \((2 a)^2-2 \cdot 2 a \cdot \frac{1}{a}+\left(\frac{1}{a}\right)^2+8 a \cdot \frac{1}{a}\)

= \(\left(2 a-\frac{1}{a}\right)^2+8\)

= R.H.S

Question  3. Using formula, let’s solve each of the following problems 

1. Let’s find the value of x² + y² when x – y = 3, xy = 28
Solution:

x² +y²

– x² + y² =(x- y)² + 2xy

= (3)² +2.2.8

= 9 + 56

= 65

The value of  x² +y² = 65

2. Let’s find the value of ab when a² + b² = 52, a – b = 2
Solution:

ab = \(\frac{-\left(a^2+b^2\right)-(a-b)^2}{2}\)

= \(\frac{52-(2)^2}{2}\)

= \(\frac{52-4}{2}\)

= \(\frac{+48}{2}\)

= + 24

The value of ab = + 24

3. Let’s find the value of Im when l² + m² = 13, l + m = 5
Solution:

lm = \(\frac{(l+m)^2-\left(l^2+m^2\right)}{2}\)

= \(\frac{(5)^2-13}{2}\)

= \(\frac{25-13}{2}\)

= \(\frac{12}{2}\)

= 6

The value of Im = 6

4. Let’s find the value of \(a^2+\frac{1}{a^2}\) when \(a+\frac{1}{a}\)= 4
Solution :

⇒ \(a^2+\frac{1}{a^2}\)

\(a^2+\frac{1}{a^2}=\left(a+\frac{1}{a}\right)^2-2 \cdot a \cdot \frac{1}{a}\) – 2

= (4)² – 2

= 16-2 = 14

The value of \(a^2+\frac{1}{a^2}\) = 14

5. Let’s find the value of \(a^2+\frac{1}{a^2}\) when = \(a-\frac{1}{a}\)= 4
Solution :

⇒ \(a^2+\frac{1}{a^2}\)

= \(a^2+\frac{1}{a^2}=\left(a-\frac{1}{a}\right)^2+2 \cdot a \cdot \frac{1}{a}\)

= (4)²+4

= 16 +2 = 18

The value of \(a^2+\frac{1}{a^2}\) = 18

6. If \(5 x+\frac{1}{x}\) = 6 lets show 25x²+ \(\frac{1}{x^2}\) = 26
Solution:

⇒ \(5 x+\frac{1}{x}\)= 6

= \(\left(5 x+\frac{1}{x}\right)^2\)

= (6)²= 36

L.H.S = \(25 x^2+\frac{1}{x^2}+2.5 x \cdot \frac{1}{x}\) = 36

L.H.S = \(25 x^2+\frac{1}{x^2}\) = 36 – 10

= 26 R.H.S

7. If \(2 x+\frac{1}{x}=5\) 1 let’s find the value of \(4 x^2+\frac{1}{x^2}\)
Solution:

= \(4 x^2+\frac{1}{x^2}\)

= \(4 x^2+\frac{1}{x^2}=\left(2 x+\frac{1}{x}\right)^2-2 \cdot 2 x \cdot \frac{1}{x}\)

= (5)²- 4

= 25-4

= 21

The value of \(4 x^2+\frac{1}{x^2}\) = 21

8. \(\frac{x}{y}+\frac{y}{x}\)= 3 , let find the value of \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\) ,
Solution:

⇒ \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\)

⇒  \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\)= \(\left(\frac{x}{y}+\frac{y}{x}\right)^2-2 \cdot \frac{x}{y} \cdot \frac{y}{x}\)

= (3)²- 2

= 9-2= 7

The value of \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\) = 7

9. If x² +y² = 4xy ,  let’s prove that .x4+ y4 = 14x²y²
Solution :

x² + y² = 4xy

⇒ Or, (x²+y²)= (4xy)²

⇒ Or, x4 + y4 + 2x²y²= 16x²y²

⇒ Or,  x4 +y4 =16x²y²=14x²y²

⇒ x4+ y4 = 14x²y²

10. If \(2 a+\frac{1}{3 a}\)= 6, then let’s find the value of \(4 a^2+\frac{1}{9 a^2}\)
Solution:

⇒ \(4 a^2+\frac{1}{9 a^2}\)

= (2a)²+ \(\left(\frac{1}{3 a}\right)^2+2 \cdot 2 a \cdot \frac{1}{3 a}-\frac{4}{3}\)

= \(\left(2 a+\frac{1}{3 a}\right)^2-\frac{4}{3}\)

= (6)² – \(\frac{4}{3}\)

= 36 – \(\frac{4}{3}\)

= \(\frac{108-4}{3}\)

= \(\frac{104}{3^{-}}\)

= 34 \(\frac{2}{3}\)

The value of \(4 a^2+\frac{1}{9 a^2}\) = 34 \(\frac{2}{3}\)

11. If \(\) = 5, Then let’s find the value of \(25 a^2+\frac{1}{49 a^2}\)
Solution:

⇒ \(25 a^2+\frac{1}{49 a^2}\)

= \(\left(5 a+\frac{1}{7 a}\right)^2-2 \cdot 5 a \cdot \frac{1}{7 a}\)

= \((5)^2-\frac{10}{7}\)

= \(25-\frac{10}{7}\)

= \(\frac{175-10}{7}\)

= \(\frac{165}{7}\)

= \(23 \frac{4}{7}\)

The value of \(25 a^2+\frac{1}{49 a^2}\) = \(23 \frac{4}{7}\)

12. If \(2 x-\frac{1}{x}=4\) , lets show that \(x^2-\frac{1}{4 x^2}\)
Solution:

⇒ \(2 x-\frac{1}{x}=4\)

⇒ Or, \(x-\frac{1}{2 x}=2\)

⇒ Or, \(\left(x-\frac{1}{2 x}\right)^2\) = (2)

⇒ Or, \(x^2+\frac{1}{4 x^2}-2 \cdot x \cdot \frac{1}{2 x}=4\)

⇒ Or, \(x^2+\frac{1}{4 x^2}\)

= 4+1

= 5

\(x^2-\frac{1}{4 x^2}\)

13. lf m + \(\frac{1}{m}\) = -p, let’s show that \(m^2+\frac{1}{m^2}\) p²- 2
Solution :

m + \(\frac{1}{m}\) = -p

⇒ or,\(\left(m+\frac{1}{m}\right)^2\) =(- p)²

⇒ Or, \(m^2+\frac{1}{m^2}+2 \cdot m \cdot \frac{1}{m}\) = p²

⇒ Or,\(m^2+\frac{1}{m^2}\) = p² – 2

\(m^2+\frac{1}{m^2}\) p²- 2

14. lf a² + b² = 5ab, let’s show that \(\frac{a^2}{b^2}+\frac{b^2}{a^2}\) – 23.
Solution :

= a² + b² = 5ab

⇒ Or, \(\frac{a^2}{a b}+\frac{b}{a b}=\frac{5 a b}{a b}\)

⇒ Or, \(\frac{a}{b}+\frac{b}{a}\) = 5

⇒ Or, \(\left(\frac{a}{b}+\frac{b}{a}\right)^2\) = (5)²

= 25

⇒ Or, \(\frac{a^2}{b^2}+\frac{b^2}{a^2}+2 \cdot \frac{a}{b} \cdot \frac{b}{a}\) = 25

⇒ Or, \(\frac{a^2}{b^2}+\frac{b^2}{a^2}\) = 25 -2

= 23

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}\) – 23.

15. If 6x² +1 = 4x> let’s show \(36 x^2+\frac{1}{x^2}\) = 28
Solution:

= 6x² +1 = 4x

⇒ Or, \(\frac{6 x^2}{x}-\frac{1}{x}\)

⇒ Or, 6x  \(\frac{1}{x}\) = 4

Squaring both sides

⇒ \(\left(6 x-\frac{1}{x}\right)^2=(4)^2\)

⇒ Or, \(36 x^2+\frac{1}{x^2}\)

= 16 +12

= 28

\(36 x^2+\frac{1}{x^2}\) = 28

16. If \(m+\frac{1}{m}\)= p-2, then let’s show  \(m^2+\frac{1}{m^2}\) = p² – 4p + 6
Solution :

⇒ \(m+\frac{1}{m}\) = p-2

⇒ Or, \(\left(m+\frac{1}{m}\right)^2\)  + = (p-2)²

⇒ Or, \(m^2+\frac{1}{m^2}\) + 2m.\(\frac{1}{m}\) = p² -4p + 4

⇒ Or, \(m^2+\frac{1}{m^2}\) = p²-4p+ 4-2.

= P² – 4p + 2

\(m^2+\frac{1}{m^2}\) = p² – 4p + 6

18. If m= \(m-\frac{1}{m-2}\) = 6, then lats find the value of \((m-2)^2+\frac{1}{(m-2)^2}\)
Solution:

= m- \(\frac{1}{m-2}\) = 6

Or, m-2-\(\frac{1}{m-2}\)

= 6 – 2 = 4

Squaring both sides

⇒ \((m-2)^2-2 \cdot(m-2) \times\left(\frac{1}{m-2}\right)+\left(\frac{1}{m-2}\right)^2\) = (4)2

⇒ Or, \((m-2)^2-2+\frac{1}{(m-2)^2}\) = 16

⇒ Or, \((m-2)^2+\frac{1}{(m-2)^2}\) = 16+2

⇒ Or, \((m-2)^2+\frac{1}{(m-2)^2}\) = 18

The value of \((m-2)^2+\frac{1}{(m-2)^2}\) = 18

WB Class 7 Math Solution Algebraic Formula Exercise 12.5

Question 1. In the identity No. (4) if x = a and a = b, then let’s find if it becomes identity No. (1).
Solution :

In the identity No. (4) ie.

x = a and a = b

⇒ (x + a) (x + b) = x² + (a + b)x + ab

⇒ When x = a & a = b

⇒ (a + b) (a + b) = a² + 2ab + b²

⇒ or, (a + b)² = a² + 2ab + b² . It is identified as No. (1)

Question 2. In the identity No. (4), let’s substitute x = a and a = – b, and verify if it becomes identity No. (3).
Solution:

x = a and a = – b,

In the identity No. (4) ie.

(x + a) (x + b) = x² + (a + b)x+ ab

(a-b) (a + b) = a² +(a-a)0 + (-b)(b)

= a²- b² It is identify No. (3)

Question 3. In identity (4), let’s substitute x = a and a = – b, and try to identify which identity it changes to.
Solution :

In identity No (4) ie.

x = a and a = – b

(x + a) (x + b) = x²+ (a + b)x + ab

(a- b)(a +b) = a² + -ab + ab- b²

= a² – b²

Question 4. Using the formula (a² – b²) = (a + b) (a – b) let’s find the values 

1. (37)² – (13)²
Solution :

(37)² – (13)²

= (37+13) (37-13)

= 50 × 24 = 1200

(37)² – (13)² = 1200

(2.06)² – (0.94)²
Solution :

(2.06)² – (0.94)²

= (2.06 + 0.94) (2.06 – 0.94)

= (3.00) (1.12) = 3. 36

(2.06)² – (0.94)² = 3. 36

3. (78) × (82)
Solution :

(78) × (82)

= (80 – 2) (80 + 2)

= (80)² – (2)²

= 6400 – 4 = 6396

(78) × (82) = 6396

4. 1.15 × 0.85
Solution :

1.15 × 0.85

= (1.00 + .15) (1.00 – .15)

= (1)2-(.15)² = 1 – .0225

= 0.9775

1.15 × 0.85 = 0.9775

5.(65)²- (35)²
Solution :

(65)²- (35)²

= (65 + 35) (65 – 35)

= 100 × 30 = 3000

(65)²- (35)² = 3000

Question 2.

 1. If k – p² = (9 + p) (9 – p) let’s find the value of k.
Solution :

k – p²= (9 + p) (9 – p)

= (9 + p)(9-p) =81 -p²

k = 81.

The value of k = 81.

2. If (25 – 4x²) = (5 + ax) (5 – ax) let’s find the positive value of a.
Solution:

25 -4x² = (5 + ax) (5 – ax)

= 25 – a²x²

∴ a² = 4

∴ a = \(\sqrt{4}\) =2

3. Let us fill in the box, so that the identity (4 – x) x = (16 – x²) is satisfied.
Solution :

(4 – x) x = (1 6 – x²)

= (4)² – (x)²

= (4 – x) (4 + x)

= 4 + x

Question 3. Let’s express the following in the product form using a formula.

1. 25I² – 16m²
Solution:

25l²-16m²

= (5l)²-(43)²

= (5I + 4m) (5I – 4m)

25l²-16m² = (5I + 4m) (5I – 4m)

2. 49x4 – 36y4
Solution :

49x4 – 36y4

= (7x²)² – (6y²)²

= (7x² + 6y²) (7x² – 6y²)

49x4 – 36y4 = (7x² + 6y²) (7x² – 6y²)

3. (2a + b)² – (a + b)²
Solution :

(2a + b)² – (a + b)²

‘= (2a + b + a + b) (2a + b – a – b)

= (3a + 2b) (a) = a(3a + 2b)

(2a + b)² – (a + b)² = a(3a + 2b)

4. (x + y)² – (a + b)²
Solution :

(x + y)² – (a + b)²

= (x + y + a + b) (x + y – a – b)

(x + y)² – (a + b)² = (x + y + a + b) (x + y – a – b)

5. (x + y – z)² – (x – y + z)²
Solution :

(x + y – z)² – (x – y + z)²

= (x + y – z + x – y + z) (x + y – z – x + y – z)

= 2x (2y – 2z) = 4x (y – z)

(x + y – z)² – (x – y + z)² = 2x (2y – 2z) = 4x (y – z)

6. (m + p + q)² – (m – p – q)²
Solution :

(m + p> + q)² – (m – p – q)²

= (m + p + q + m – p – q) (m + p + q – m + p + q)

= 2m (2p + 2q) = 4m (p + q)

(m + p> + q)² – (m – p – q)² = 2m (2p + 2q) = 4m (p + q)

Question 4. Using the formula, let’s find the continued product of the following

1. (c + d) (c-d) (c² + d²)
Soluion :

(c + d) (c – d) (c² + d²)

= {(c)² -(d)²} (c² + d²)

= (c² – d²) (c² + d²)

= (c²)² – (d²)² = c4 – d4

(c + d) (c – d) (c² + d²) = c4 – d4

2. (1 + 3x²) (1 + 3x²) (1 + 9x4)
Solution :

(1 + 3x²) (1 + 3x²) (1 + 9x4)

= {(1 )² – (3x²)²} (1 +9x4)

= (1 – 9x4) (1 + 9x4)

= (1² ) (9x4

= 1 – 81 x8

(1 + 3x²) (1 + 3x²) (1 + 9x4) = 1 – 81 x8

3. (a² + b²) (a² – b²) (a4 + b4) (a8 + b8)
Solution :

(a² + b²) (a² – b²) (a4 + b4) (a8 + b8)

= {(a²)² – (b²)²} (a4 + b4) (a8 + b8)

= (a4 – b4) (a4 + b4) (a8 + b8)

= {(a4)2 – (b4)2} (a8 + b8)

= (a8 – b8) (a8 + b8)

= (a8)2 – (b8)2

= a16 – b16

(a² + b²) (a² – b²) (a4 + b4) (a8 + b8) = a16 – b16

Question 5. Let’s express the following in the product form.

1. 16c4 – 81 d4
Solution :

16c4 – 81

16c4 – 81 = (4c²)° – (9d²)²

16c4 – 81 = (4c² – 9d²) (4c² + 9d²)

16c4 – 81 = {(2c)² – (3d)²} (4c² + 9d²)

16c4 – 81 = (2c + 3d) (2c – 3d) (4c ²+ 9d²)

16c4 – 81 = (2c + 3d) (2c – 3d) (4c ²+ 9d²)

2. p4q4 – r4s4
Solution :

p4q4 – r4s4

p4q4 – r4s4 = (p²q²)² (r²s²)²

p4q4 – r4s4 = (p²q² + r²s²) (p²q² – r²s²)

p4q4 – r4s4 = (P²q² + r²s²) {(pq)²- (rs)²}

p4q4 – r4s4 = (p²q²+r²s²) (pq + rs) (pq – rs)

p4q4 – r4s4 = (p²q²+r²s²) (pq + rs) (pq – rs)

3. 81 – x4
Solution :

81 – x4

= (9)² – (x²)²

= (9 – x²) (9 + x²)

= {(3)² – (x)²} (9 + x²)

= (3 + x) (3 – x) (9 + x²)

81 – x4 = (3 + x) (3 – x) (9 + x²)

4. 625 -a4b4
Solution :

625 -a4b4

= (25)²- (a²b²)²

= (25 – a²b²)(25 + a²b²)

= {(5)²-(ab)²} (25 + a²b²)

= (5 + ab) (5 – ab) (25 + ab)

625 -a4b= (5 + ab) (5 – ab) (25 + ab)

Question 6. Let’s prove (p + q)4– (p – q)4 = 8pq (p² + q²)
Solution :

(p + q)4– (p – q)4 = 8pq (p² + q²)

LHS = {(P + q)² + (p – q)²} {(p + q)² – (P – q)²}

= (P² + 2pq + q² + p² – 2pq + q²) (p² + 2pq – q²)

= (2p² + 2q²) × 4pq

= 2 (p²q²) × 4pq

= 8pq (p² + q²) = RHS

Question 7. Using formula let’s multiply: (a + b + c) (b + c – a) (c + a – b) (a + b – c)
Solution :

(a + b + c) (b + c – a) (c + a – b) (a + b – c)

= (a + b + c) (a + b – c) (b + c – a) (c + a – b)

= {(a + b)² – c²} {c – (a – b)} {c + (a – b)}

= {(a + b)² – c²} {c² – (a -b)²}

= c² (a + b)² – c4 – (a – b)² (a + b)² + c² (a – b)²

= c² {(a + b)² + (a – b)²} – c4 – (a2 – b²)² .

=.c² (2a² + 2b²) – c4 – (a4 – 2a²b² + b4)

= 2a²c²+ 2b²c² + 2a²b² – a4 -b4 – c4

(a + b + c) (b + c – a) (c + a – b) (a + b – c) = 2a²c²+ 2b²c² + 2a²b² – a4 -b4 – c4

Question 8. If x = \(\frac{a}{b}+\frac{b}{a}\) and Y = \(\frac{a}{b}-\frac{b}{a}\) then ,let’s show that x4 + y4 – 2x²y² =16
Solution:

Given

x = \(\frac{a}{b}+\frac{b}{a}\) and Y = \(\frac{a}{b}-\frac{b}{a}\)

LHS= x4+y4-2x²y²= (x²)²+(y²)²-2x²y²

= (x² – y²)² = {(x + y) (x – y)}²

= \(\left(\frac{a}{b}+\frac{b}{a}+\frac{a}{b}-\frac{b}{a}\right)^2\left(\frac{a}{b}+\frac{b}{a}-\frac{a}{b}+\frac{b}{a}\right)^2\)

= \(\left(2 \frac{a}{b}\right)^2 \times\left(2 \frac{b}{a}\right)^2\)

= \(4 \frac{a^2}{b^2} \times 4 \frac{b^2}{a^2}\)

= 16 = RHS

Question 9. Using formula let’s multiply : (a² + a + 1) (a² – a + 1) (a4 – a² + 1)²
Solution :

(a² + a + 1) (a² – a + 1) (a4 – a² + 1)

= (a² +1 + a) (a² + 1- a) (a4 – a² + 1)

= { (a² + 1- a² }(a4 +1- a²)

= (a4+2a² +1-a²)(a4 +1-a²)

= (a4 +1 + a²)(a 4 +1-a²)

= (a4 )+ 2a4 +1- a4

= a8 +2a4 +1-a4

= a8+ a4+1

(a² + a + 1) (a² – a + 1) (a4 – a² + 1) = a8+ a4+1

Question 10. If x = \(\left(a+\frac{1}{a}\right)\) and y= \(\left(a-\frac{1}{a}\right)\) , then lets find the value of x4 + y4-2x²y².

Given

x = \(\left(a+\frac{1}{a}\right)\) and y= \(\left(a-\frac{1}{a}\right)\)

x4 + y4 -2x²y² .

= \(\left(x^2-y^2\right)^2\)

= \((x+y)^2(x-y)^2\)

= \(\left(a+\frac{1}{a}+a-\frac{1}{b}\right)^2\left(a+\frac{1}{a}-a+\frac{1}{a}\right)^2\)

= \((2 a)^2 \times\left(\frac{2}{a}\right)^2\)

= \(4 a^2 \times \frac{4}{a^2}\)

= 16

The value of x4 + y4-2x²y² = 16

Question 11. Let’s express (4x² + 4x + 1- a² + 8a-16) as the difference of two squares, using the formula, (in the form a² – b² )

= (4x² + 4x +1)- (a² – 8a +1 6)

= (2x +1)²-(a-4)²

(4x² + 4x + 1- a² + 8a-16) = (2x +1)²-(a-4)²

Question 12. Let’s express \(a^2+\frac{1}{a^2}-3\) as the difference of two squares (in the form a² – b²)
Solution:

⇒ \(a^2+\frac{1}{a^2}-3\)

= \(a^2+\frac{1}{a^2}-2-1\)

= a²- 2a \(\frac{1}{a}\)+ \(\frac{1}{a^2}\) – (1)²

= (a- \(\frac{1}{a}\))² – (1)²

\(a^2+\frac{1}{a^2}-3\) = (a- \(\frac{1}{a}\))² – (1)²

 

Leave a Comment