Class 7 Math Solution WBBSE Algebra Chapter 3 Concept Of Index Exercise 3 Solved Problems
Power or Index: The product obtained by multiplying a number several times by itself is called the power or Index of that number.
⇒ 3 x 3 x 3 x 3 =34 (Power or Index of 3 is 4)
⇒ a x a x a x a x a =a5 (Power or Index of a is 5)
⇒ Some important formulas on Index
⇒ [a is non zero integer and also m and n are integers]
1. am. an = am + n
2. am ÷ an = am – n
3. (am)n = amn
4. \(a^m=\frac{1}{a^{-m}}\)
5. a0 = 1
6. (ab)m = am.bn
7. \(\left(\frac{a}{b}\right)^m=\frac{a^m}{b^m}\)
Wbbse Class 7 Maths Solutions
Question 1. Choose the correct answer
Read and Learn More WBBSE Solutions for Class 7 Maths
1. If we express the number 35400000 in index of 10 we get
1. 354 x 104
2. 354 x 103
3. 354 x 105
4. 354 x 106
Solution: 35400000
= 354 x 100000
= 354 × 105
So the correct answer is 3. 354 x 105
2. If we express the number 16489 in index form as power of 10 we get
1. 16.489 x 102
2. 164.89 x 102
3. 1.6489 x 102
4. 1648.9 x 102
Solution: 16489 = \(\frac{16489}{100}\) x 100
= 164.89 × 102
So the correct answer is 2. 164.89 x 102
3. The value of 7 x 106 + 3 x 104+ 4 x 103 + 6 × 102 + 8 x 10 + 9 is
1. 734689
2. 7346089
3. 7340689
4. 7034689
Solution: 7 x 106 + 3 x 104+ 4 x 103 + 6 × 102 + 8 x 10 + 9
= 7000000 + 30000 + 4000+ 600 + 80 +9
= 7034689
So the correct answer is 4. 7034689
Wbbse Class 7 Maths Solutions
Question 2. Write ‘true’ or ‘false’
1. The simplest form of (a7×a-5)+(a-3×a6) is \(\frac{1}{a}\)
Solution: (a7×a-5)+(a-3×a6)
= \(\frac{a^7 \times a^{-5}}{a^{-3} \times a^6}=\frac{a^{7-5}}{a^{-3+6}}=\frac{a^2}{a^3}=a^{2-3}=a^{-1}=\frac{1}{a}\)
So the statement is true.
2. (-5)4× (3)4= -50625
Solution: (-5)4× (3)4
= (-5) × (-5) × (-5) x (-5) × 3 × 3 × 3 × 3
= (+25) × (+25) x 81
= + 625 x 81
= 50625
So the statement is false.
3. The value of \(\frac{3 \times 7^2 \times 2^4}{21 \times 112}\) is 1
Solution: \(\frac{3 \times 7^2 \times 2^4}{21 \times 112}\)
= \(\frac{3 \times 7^2 \times 2^4}{3 \times 7 \times 2^4 \times 7}\)
= 31-1 x 72-1-1 x 24-4
= 30 x 70 x 20
= 1 x 1 x 1
= 1
So the statement is true.
Question 3. Fill in the blanks
1. 20 x 18 x = [22×3×5]2
Solution: 20 x 18 x = 24 x 32 x 52
⇒ 22 × 5 ×32 x 2 x = 24 x 32 x 52
⇒ 22+1 x 5 x 32 x = 24 x 32 x 52
⇒ = \(\frac{2^4 \times 3^2 \times 5^2}{2^3 \times 5 \times 3^2}\)
=24-3 x 32-2 x 52-1
= 21x 30 x 51
= 2 x 1 x 5
= 10
Wbbse Class 7 Maths Solutions
2. \(\left(x^2\right)^3 \times\left(y^{-3}\right)^2=\left(\frac{x}{y}\right)\)
Solution: \(\left(x^2\right)^3 \times\left(y^{-3}\right)^2\)
= x6 x y-6
= \(\frac{x^6}{y^6}=\left(\frac{x}{y}\right)^6\)
So the answer is 6
3.
Solution: (-7)2 x 82
= 49 x 82
= 72 x 82
= (7 x 8)2
= (56)2
⇔ (-7)2 x 82
= (-7 x 8)2= (-56)2
So the answer is 56 or -56.
Question 4. Express 49 x 49 x 49 x 49 as a power 7
Solution: 49 x 49 x 49 x 49
= 7 x 7 x 7 x 7 x 7 x 7 x 7 x 7
= 78
Wbbse Class 7 Maths Solutions
Question 5. Express the following numbers in index form as the power of 10 (taking 1, 2, and 3 places of the decimal)
1. 4678
2. 526824
Solution: 1. 4678
= \(\frac{4678}{10}\) x 10 =467.8 x 10
⇒ 4678 = \(\frac{4678}{100}\) x 100 = 46.78 x 102
⇒ 4678 = \(\frac{4678}{1000}\) x 1000 = 4.678 x 103
2. 526824
⇒ 526824 = \(\frac{526824}{10}\) x 10 = 52682.4 x 10
⇒ 526824 = \(\frac{526824}{100}\) x 100 = 5268.24 x 102
⇒ 526824= \(\frac{526824}{1000}\) x 1000 = 526.824 x 103
Question 6. Form the numbers from their expanded form
1. 9 x 104 + 3 x 102 + 7
2. 3 x 107 + 4 x 106 + 2 x 104 +7 x 102 + 5
Solution:
1. 1. 9 x 104 + 3 x 102 + 7
= 90000 + 300 + 7
= 90307
2. 3 x 107 + 4 x 106 + 2 x 104 +7 x 102 + 5
= 30000000+4000000+ 20000 + 700 + 5
= 34020705
Question 7. Simplify and express each of them in powder form
1. \(\frac{10^3 \times 10^4}{2^5 \times 5^4}\)
2. \(\frac{4^8 \times a^{10} b^4}{4^3 \times a^4 b^2}\) [ a ≠ 0, b ≠ 0]
Solution:
1. \(\frac{10^3 \times 10^4}{2^5 \times 5^4}\)
= \(\frac{(2 \times 5)^3 \times(2 \times 5)^4}{2^5 \times 5^4}\)
= 23+4-5 x 53+4-4
= 22x53
= 4 × 125
= 500
2. \(\frac{4^8 \times a^{10} b^4}{4^3 \times a^4 b^2}\)
=48-3 x a10-4 x b4-2
= 45 x a6 x b2
Question 8. So that \(a^m=\frac{1}{a^{-m}}\)
Solution: am = a0-(-m)
= \(\frac{a^0}{a^{-m}}=\frac{1}{a^{-m}}\)
Class 7 Math Solution WBBSE Concept Of Index
Concept Of Index Exercise 5.1
Let’s expand the following in the index of
Question 1. 8275
Solution:
8275 = 8 × 103 + 2 × 102 +7 ×10 + 5
Question 2. 90925
Solution:
90925 = 9 × 104 + 0 ×103+9 ×102 +2 ×10 + 5
Question 3. 12578
Solution:
12578 = 1 × 104 +2 × 103 + 5 × 102 +7 ×10 + 8
Question 4. 7858
Solution:
7858 = 7 × 103 + 8 × 102 + 5×10 + 8
Class Vii Math Solution WBBSE Concept Of Index Exercise 5.2
Question 1. 100 = 10 ____
Solution:
100 = 10 × 10
= 102
Question 2. 27 = 3____
Solution:
27 = 3 × 3 × 3
= 33
Question 3.125 = 5____
Solution:
125 = 5 × 5 × 5
= 53
Question 4. 32 = 2___
Solution:
32 = 2 × 2 × 2 × 2 × 2
= 25
Question 5. 343 = 7____
Solution:
343 = 7 × 7 × 7
= 73
Question 6.121 = 11______
Solution:
121=11
121= 11 × 11
=112
Question 7. 625 = 5______
Solution: =
625 = 5 × 5 × 5 × 5
= 54
Question 8. 23 = ____× _____×
Solution:
23 = ____× _____× = 2 × 2 ×2
= 23
Question 9. 34 = _____ ×_____ ×_____ ×
Solution: =
34 = _____ ×_____ ×_____ × = 3 × 3 × 3 × 3=
= 34
= 81
Question 10. 729 = 9_____
Solution:
729 = 9 × 9 × 9
= 93
Question 11. 2 × 2× 2 × 2 × 2 = _____
Solution:
2 × 2× 2 × 2 × 2 = 25
Question 12. (- 2) × (- 2) × (- 2) = (- 2)_________
Solution:
2 × 2× 2 × 2 × 2 = (-2)3
Question 13. (- 2) ×(- 2) × (- 2) × (- 2) = (- 2) ________________
Solution:
(- 2) ×(- 2) × (- 2) × (- 2) = (- 2)
= (-2)4
Class Vii Math Solution WBBSE Concept Of Index Exercise 5.3
Let’s express the following numbers in the product of power from of their prime factors.
Question 1. 24.
Solution:
24= 2 × 2 × 2 × 3 = 23 × 3
Question 2. 56.
Solution:
56 = 2× 2 × 2 ×7 = 23 ×7
Question 3. 63.
Solution:
63. = 3 × 3 × 7 = 32 × 7
Question 4. 72
Solution:
72 = 2 × 2 × 2× 3 ×3 = 23 × 32
Question 5. 200
Solution:
200 = 2 ×2 × 2× 5× 5 = 23 × 52
Class Vii Math Solution WBBSE Concept Of Index Exercise 5.4
Let’s put > or < signs in the respective blank squares
Question 1. 53 ____________ 35
Solution:
53 = 5× 5× 5
= 125
35 = 3×3 × 3× 3×3
= 243
∴ 53 < 35
Question 2. 62______________26
Solution:
62 = 6 ×6
= 36
26 = 2 × 2 × 2 × 2 × 2 × 2
= 64
∴ 62 < 26
Question 3. 24________42
Solution:
24 = 2 × 2 × 2 × 2
= 16
42= 4 × 4 = 16
∴ 24= 42
Question 4. 72______27
Solution:
72 = 7x 7
= 49
27 = 2×2 × 2 × 2 × 2 × 2 ×2
= 128
∴ 72< 27
Question 5. 34_________43
Solution:
34 = 3 × 3 × 3 × 3
= 81
43 = 4 × 4 × 4 = 64
∴ 34> 43
Question 6. 35_______53
Solution:
35 = 3 × 3 × 3 × 3 × 3
= 243
53=5 × 5 × 5
= 125
∴ 35>53
WB Class 7 Math Solution Concept Of Index Exercise 5.5
Question 1. 25 × 27
Solution:
25 × 27 = 25+7
= 212
Question 2. (-3)18× (-3)12
Solution:
(-3)18× (-3)12= (3)18+12
= (-30)30
Question 3. 108 x 102
Solution:
108 x 102 = (10)8+2
= (10)10
Question 4. 215 ÷ 213
Solution:
215 ÷ 213
= (2)15-13
= 22
Question 5. 915-914
Solution:
915-914 = 915-14
= 9
Question 6. 116÷ 114
Solution:
116÷ 114 = 116-4
= 112
Concept Of Index Exercise 5.6
Let’s fill the blank squares given below:
Question 1. 92÷ 92 = ________________
Solution: =
92÷ 92 = 92-2
= 90
= 1
Question 2. 73_______0 = 1
Solution:
73_______0 = 1
73 ÷73 = 1
= 70
Question 3. 110= ______________
Solution:
110 = 1
Question 4. 1 =13__________
Solution:
1 =13___
∴ 1= 130= 1
∴ 1-1 = 0
Question 5. 1 =(- 13) _______________
Solution:
1 =(- 13)
= (-13)0
WB Class 7 Math Solution Concept Of Index Exercise – 5.7
Question 1. 65÷25 = ________________
Solution:
65÷25
= \(\frac{6^5}{2^5}\)
= \(\left(\frac{6}{2}\right)^5\)
= (3)5
Question 2. _____ = 72 ÷ 22
Solution:
= \(\frac{7^2}{2^2}\)
= \(\left(\frac{7}{2}\right)^5\)
Question 3. 102 = ______ × ________
Solution:
102 = 10 × 10
Question 4. (4)2 × 62 = ________2
Solution:
(4)2 × 62
(-42 × 62) = (-24)2
Question 5. (5)0 = ______________
Solution:
(5)0 = 1
6. \(\left(\frac{2}{3}\right)^3\)
Solution:
⇒ \(\left(\frac{2}{3}\right)^3\)
= \(\frac{2^3}{3^3}=\frac{8}{27}\)
Concept Of Index Exercise – 5.8
Question 1. Let us express 8 × 8 × 8 as power of 2.
Solution :
Given
8 × 8 × 8
= 23 × 23 × 23+3+3
= (2)9
Question 2. 25 × 25 × 25 × 25 to be expessed as power of 5.
Solution :
Given
25 × 25 × 25 × 25
= 52 × 52 × 52× 52
= (5)2+2+2+2
= (5)8
Question 3. Let’s express 36 × 36 × 36 as the power of 6.
Solution :
Given
36 × 36 × 36
= (6)2 × (6)2 × (6)2
= (6)2+2 +2 = 66
Question 4. Let’s express 81 x 81 as power of 3.
Solution :
Given
81 x 81
= 34 × 34 = (3)4+4
= 38
Question 5. Let us find the values of the following
1. \(\frac{2^6 \times 3^5}{(6)^5}\)
Solution:
Given
⇒ \(\frac{2^6 \times 3^5}{(6)^5}\)
= \(\frac{2^6 \times 3^5}{(2 \times 3)^5}\)
= \(\frac{2^6 \times 3^5}{2^5 \times 3^5}\)
= 2¹
= 2
2. \(\frac{10^3 \times 10^4}{2^5 \times 5^4}\)
Solution:
Given
⇒ \(\frac{10^3 \times 10^4}{2^5 \times 5^4}\)
= \(\frac{(2 \times 5)^3 \times(2 \times 5)^4}{2^5 \times 5^4}=\frac{2^3 \times 5^3 \times 2^4 \times 5^4}{2^5 \times 5^4}\)
= \(\frac{(2)^3 \times(2)^4 \times 5^3}{2^5}=2^{3+4-5} \times 5^3\)
22 × 53 = 4 × 125
= 500
3. \(\frac{5^9 \times 5^6}{5^7}\)
Solution:
Given
⇒ \(\frac{5^9 \times 5^6}{5^7}\)
= \(5^{9+6-7}\)
= 58
4. \(\frac{6^4 \times 3^8}{3^{12}}\)
Solution:
Given
⇒ \(\frac{6^4 \times 3^8}{3^{12}}\)
= \(\frac{(3 \times 2)^4 \times 3^8}{3^{12}}\)
= \(\frac{(3)^{4+8} \times 2^4}{3^{12}}\)
= 2 × 2 × 2 × 2
= 16
5. \(\frac{25^2 \times 25^5}{5^{10}}\)
Given
⇒ \(\frac{25^2 \times 25^5}{5^{10}}\)
= \(\frac{\left(5^2\right)^2 \times\left(5^2\right)^5}{5^{10}}\)
= \(\frac{5^4 \times 5^{10}}{5^{10}}\)
= 54
5 × 5 × 5 × 5 = 625
6. \(\frac{2^3 \times 3^9}{3^6 \times 6^3}\)
Given
⇒ \(\frac{2^3 \times 3^9}{3^6 \times 6^3}\)
⇒ \(\frac{2^3 \times 3^9}{3^6 \times(2 \times 3)^3}\)
= \(\frac{2^3 \times 3^9}{3^6 \times 2^3 \times 3^3}\)
=\(\frac{3^9}{3^9}\)=1
7. \(\left(\frac{a^7}{a^5}\right) \times \begin{gathered}
a^2 \\
(a \neq 0)
\end{gathered}\)
Solution:
⇒ \(\left(\frac{a^7}{a^5}\right) \times \begin{gathered}
a^2 \\
(a \neq 0)
\end{gathered}\)
= \(\left(\frac{a^7}{a^5}\right) \times a^2\)
= \(\left(a^{7-5}\right) \times a^2\)
a2 × a2 = a4
8.\(\frac{3 \times 7^2 \times 2^4}{21 \times 112}\)
Solution:
Given
⇒ \(\frac{3 \times 7^2 \times 2^4}{21 \times 112}\)
= \(\frac{3 \times 2^4 \times 7^2}{3 \times 7 \times 7 \times 16}\)
= \(\frac{7^2 \times 2^4}{7^2 \times 2^4}\)
= 1
WB Class 7 Math Solution Concept Of Index Exercise 5.9
Question 1. Let’s express the distances given below in index of 10 and try to get a better idea of the distances Distance of Mercury from Sun is 57900000 km. Distances of Mars and Jupiter from Sun are 227900000 km. and 778300000 km respectively.
Solution :
Given
Distances of Mars and Jupiter from Sun are 227900000 km. and 778300000 km respectively.
1. Distance of Mercury from Sun = 57900000 km.
= 579 × 105 km.
2. Distance of Mars from Sun = 227900000 km
= 2279 ×105 km.
3. Distance of Jupiter from Sun = 778300000 km.
= 7783 × 105 km.
Question 2. Let’s fill in the gaps –
1. The distance between Earth and the Moon is 384,000,000 m. = 384 x____________ m.
Solution :
⇒ Distance between Earth and Moon
⇒ 384,000,000 m = 384 x 10 6
∴ 106
2. The speed of light in a vacuum is 3,00,000,000 m/sec. = 3 x_m/sec.
Solution:
⇒ The speed of light in a vacuum
= 3,00,000,000 m/sec. = 3 ×108 m/sec
∴ 108
3. Let’s express the following number in index form as power of 10 (taking 1,2 and 3 places of decimal)
1. 978 =
Solution:
= 97. 8 × 10
= 9. 78 × 102
= 0.978 × 103
2. 1592170 =
Solution:
= 159217 × 10
= 15921 .7 × 102
= 1592 .17 × 1023
Question 4. Let’s form the numbers from their expanded form given below –
1. 3 ×103 +2 ×102 +7 × 10+ 2
Solution:
3 ×103 +2 ×102 +7 × 10+ 2 = 3000 + 200 + 70 + 2
= 3272
2. 2 × 103+3 ×10+ 5
Solution:
2 × 103+3 ×10+ 5 = 2000 + 30 + 5
= 2035
3. 8 ×104 + 2 × 103 + 3 × 102 + 6
Solution:
8 ×104 + 2 × 103 + 3 × 102 + 6
= 80000 + 2000 + 300 + 6
= 82306
4. 9 ×104 +5 ×103 +6 × 102 + 6 ×10
Solution:
9 ×104 +5 ×103 +6 × 102 + 6 ×10
= 90000 + 5000 + 600 + 70
= 95670
Question 5. Let’s simplify and express each of them in powder form
1. \(\frac{2^3 \times 3^5 \times 16}{3 \times 32}\)
Solution:
= \(\frac{2^3 \times 3^5 \times 2^4}{3 \times 2^5}=\frac{2^{3+4} \times 3^5}{2^5 \times 3}\)
= \(2^{7-5} \times 3^{5-1}\)
= \(2^2 \times 3^4\)‘
= 22 × 92
= (18)2
= 182
= 324
2. \(\left[\left(6^2\right)^3 \times 6^4\right] \div 6^7\)
Solution:
\(\left[\left(6^2\right)^3 \times 6^4\right] \div 6^7\) = 66 × 64÷ 67
= 66+4-7
= 63
3. \(\frac{3 \times \cdot 7^2 \times 11^0}{21 \times 7}\)
Solution:
⇒ \(\frac{3 \times 7^2 \times 1}{3 \times 7 \times 7}\)
= \(\frac{7^2}{7^2}\)
= 1
4. \(\left(3^0+2^0\right) \times 5^0\)
Solution:
(1+1) ×1
= 2 ×1 = 2
5. \(\frac{4^5 \times a^8 b^3}{4^5 \times a^5 b^2}(b \neq 0)\)
Solution:
6. \(\frac{2^8 x^7}{\left(2^2\right)^3 \times x^3}=\frac{2^8 \times x^7}{2^6 \times x^3}\)
⇒ \(\frac{2^8 x^7}{\left(2^2\right)^3 \times x^3}=\frac{2^8 \times x^7}{2^6 \times x^3}\)
= \(2^{8-6} \times x^{7-3}=2^2 \times x^4\)
= \((2)^2 \times\left(x^2\right)^2=\left(2 x^2\right)^2\)