Oscillation Displacement
Displacement in SHM can be represented by,
y = a sin cot → (1)
Where ‘y’ is instantaneous displacement, ‘a’ is amplitude, and ‘Q’ is angular frequency.
Simple Harmonic Motion (SHM) NEET Notes
Oscillation Velocity
Velocity of a particle in SHM
v = \(\frac{d y}{d t}=\frac{d}{d t}(a \sin \omega t) \Rightarrow v=a \omega \cos \omega t\) → (2)
v = \(a \omega\left[1-\sin ^2 \omega t\right]^{\frac{1}{2}}\)
v = \(\omega \sqrt{a^2-a^2 \sin ^2 \omega t}\)
v = \(\omega \sqrt{a^2-y^2}\)
⇒ \(v^2=\omega^2\left(a^2-y^2\right)\)
⇒ \(\frac{v^2}{\omega^2}=a^2-y^2 \Rightarrow \frac{v^2}{a^2 \omega^2}=1-\frac{y^2}{a^2}\)
⇒ \(\frac{v^2}{a^2 \omega^2}+\frac{y^2}{a^2}=1\)
Which is an equation of ellipse. This means, the graph of v versus y in SHM is an ellipse.
Read And Learn More: NEET Physics Notes
Oscillation Acceleration
Acceleration of SHM is given by,
NEET Study Material for Oscillations Chapter
A = \(\frac{d v}{d t}=\frac{d}{d t} a \omega \cos \omega t\)
A = \(-a \omega^2 \sin \omega t\) → (3)
A = \(-\omega^2 \mathrm{y}\)→(4)
Note: \(v_{\max }=a \omega ; A_{\max }=-\omega^2 a\)
NEET Physics Oscillations Notes
Oscillation Potential Energy
The potential energy of a particle in SHM is,
U = \(\frac{1}{2} \mathrm{ky}^2\)
Where, k = \(m \omega^2\)
Oscillation Kinetic Energy
The kinetic energy of a particle in SHM is,
K = \(\frac{1}{2} m v^2=\frac{1}{2} m \omega^2\left(a^2-y^2\right)\)
∴ Total energy is, E = U + K
= \(\frac{1}{2}\)ky2 + \(\frac{1}{2}\)k(a2-y2)
= \(\frac{1}{2}\)ky2 + \(\frac{1}{2}\)ka2 – \(\frac{1}{2}\)ky2
E = \(\frac{1}{2}\)ka2
NEET Physics Oscillations Important Formulas
Note:
- From the above equation, we see that energy is directly proportional to the square of the amplitude
- Also, intensity (I) is directly proportional to the square of the amplitude
I = \(\frac{E}{A t} \ E \propto a^2\)
∴ I \(\propto a^2\)
Time of oscillation of a simple pendulum (for small oscillations) is given by
T = \(2 \pi \sqrt{\frac{\ell}{g}}\)
Period of oscillation of a spring mass system is given by,
⇒ \(2 \pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}}}\)
Where k is the spring constant.
If a spring of spring constant k is cut into two halves, each part will have a spring constant equal to 2k.
Oscillation
Best Short Notes for Oscillations NEET
The above point can be understood easily by using,
F = kx and Y = \(\frac{F}{A \Delta}\) equation
If a spring of spring constant k is cut into n equal halves, the each part will have a spring constant equal to nk.
NEET Physics Oscillations MCQs with Solutions
The series combination of springs
⇒ \(\frac{1}{\mathrm{~K}_{\mathrm{eff}}}=\frac{1}{\mathrm{k}_1}+\frac{1}{\mathrm{k}_2}+\frac{1}{\mathrm{k}_3}+\ldots .+\frac{1}{\mathrm{k}_{\mathrm{a}}}\)
If there are two springs, then
⇒ \(\frac{1}{\mathrm{~K}_{\text {efe }}}=\frac{1}{\mathrm{k}_1}+\frac{1}{\mathrm{k}_2} \)
⇒ \(\frac{1}{\mathrm{~K}_{\text {eff }}}=\frac{\mathrm{k}_1+\mathrm{k}_2}{\mathrm{k}_1 \mathrm{k}_2}\)
⇒ \(\mathrm{~K}_{\text {eff }}=\frac{\mathrm{k}_1 \mathrm{k}_2}{\mathrm{k}_1+\mathrm{k}_2}\)
When ‘n’ springs of equal spring constants k are connected in series, then Keff = nk
Oscillations NEET Important Questions and Answers
Parallel combination of springs: When ‘n’ springs of spring constants kWhen ‘n’ springs of spring constants k1, k2, and so on are connected in series, then, k2, ….kn are connected in parallel, then,
Keff = k2 + k2 + ….. + kn
When ‘n’ springs of equal spring constants k are connected in parallel, then Keff = nk