WBBSE Solutions For Class 10 Maths Chapter 5 Ration And Proportion Exercise 5.3

WBBSE Solutions For Class 10 Maths Chapter 5 Ration And Proportion Exercise 5.3

Question 1. If a: b = c:d, let us show that:

1.  (a² + b²): (a²-b²) = (ac + bd): (ac-bd)

Solution: \(\left(a^2+b^2\right):\left(a^2-b^2\right)=(a c+b d):(a c-b c)\)

Let \(\frac{\mathrm{a}}{\mathrm{b}}=\frac{\mathrm{c}}{\mathrm{d}}=\mathrm{k}\)     [k ≠ 0]

∴ a = bk, c = dk

L.H.S. = \(\frac{a^2+b^2}{a^2-b^2}=\frac{(b k)^2+b^2}{(b k)^2-b^2}=\frac{b^2 k^2+b^2}{b^2 k^2-b^2}=\frac{b^2\left(k^2+1\right)}{b^2\left(k^2-1\right)}=\frac{k^2+1}{k^2-1}\)

R.H.S. = \(\frac{a c+b d}{a c-b d}=\frac{b k \cdot d k+b d}{b k \cdot d k-b d}=\frac{b d k^2+b d}{b d k^2-b d}=\frac{b d\left(k^2+1\right)}{b d\left(k^2-1\right)}=\frac{k^2+1}{k^2-1}\)

∴ L.H.S. = R.H.S.

“WBBSE Class 10 Maths Ratio and Proportion Exercise 5.3 solutions”

2. √a²+ b²: √b² + d² = (pa + qc): (pb + qd)

Solution: \(\sqrt{a^2+b^2}: \sqrt{b^2+d^2}=(p a+q c):(p b+q d)\)

L.H.S. = \(\frac{\sqrt{\mathrm{a}^2+\mathrm{c}^2}}{\sqrt{\mathrm{b}^2+\mathrm{d}^2}}=\frac{\sqrt{\mathrm{b}^2 \mathrm{k}^2+\mathrm{d}^2 \mathrm{k}^2}}{\sqrt{\mathrm{b}^2+\mathrm{d}^2}}=\frac{\mathrm{k}\left(\sqrt{\mathrm{b}^2+\mathrm{d}^2}\right)}{\left(\sqrt{\mathrm{b}^2+\mathrm{d}^2}\right)}=\mathrm{k}\)

R.H.S. = \(\frac{p a+q c}{p b-q d}=\frac{p d k+q d k}{p b-q d}=\frac{k(p d+q d)}{p b-q d}=k\)

∴ L.H.S. = R.H.S

 

Question 2. (a²+ b² + c²) (x² + y²+z²) = (ax + by + cz)²

Solution:

To prove, (a² + b² + c²) (x² + y²+z²) = (ax + by + cz)²

L.H.S= (a²+ b² + c²) (x² + y² + z²)

= (a²+ b² + c²) (a²k² + b²k² + c²k²) = k²(a² + b² + c²) (a² + b² + c²) = k²(a² + b² + c²)²

= k²(a² + b² + c²)²

R.H.S. = (ax+by+ cz)²

(a.ak + b.bk+c.ck)² = {k(a² + b² + C²)}²

(a² + b²+ c²) (x² + y²+z²) = (ax + by + cz)² Proved.

L.H.S = R.H.S

Class 10 Maths Class 10 Social Science
Class 10 English Class 10 Maths
Class 10 Geography Class 10 Geography MCQs
Class 10 History Class 10 History MCQs
Class 10 Life Science Class 10 Science VSAQS
Class 10 Physical Science Class 10 Science SAQs

Question 3. If a: b = c : d = e: f, let us prove that,.

1. Each ratio = \(\frac{5 a-7 c-13 e}{5 b-7 d-13 f}\)

Solution: Each ratio = \(\frac{5 a-7 c-13 e}{5 b-7 d-13 f}\)

Let, \(\frac{\mathrm{a}}{\mathrm{b}}=\frac{\mathrm{c}}{\mathrm{d}}=\frac{\mathrm{e}}{\mathrm{f}}=\mathrm{k}\) (where k ≠ 0)

∴ a = bk; c = dk; e = fk

\(\frac{5 a-7 c-13 e}{5 b-7 d-13 f}\)

= \(\frac{5 b k-7 d k-13 f k}{5 b-7 d-13 f}\)

= \(\frac{k(5 b-7 d-13 f)}{(5 b-7 d-13 f)}=k\)

∴ \(\frac{\mathrm{a}}{\mathrm{b}}=\frac{\mathrm{c}}{\mathrm{d}}=\frac{\mathrm{e}}{\mathrm{f}}=\mathrm{k}\)

= \(\frac{5 a-7 c-13 e}{5 b-7 d-13 f}\)

WBBSE Solutions For Class 10 Maths Chapter 5 Ration And Proportion Exercise 5.3

2. (a² + c² + e²) (b² + c² + e²) (b² + d² + f²) = (ab + cd + ef)²

Solution: To prove \(\left(a^2+c^2+e^2\right)\left(b^2+c^2+e^2\right)\left(b^2+d^2+f^2\right)=(a b+c d+e f)^2\)

L.H.S. = \(\left(a^2+c^2+e^2\right)\left(b^2+d^2+f^2\right)\)

= \(\left(b^2 k^2+d^2 k^2+d^2 k^2\right)\left(b^2+d^2+f^2\right)\)

= \(k^2\left(b^2+d^2+f^2\right)\left(b^2+d^2+f^2\right)=k^2\left(b^2+d^2+f^2\right)^2\)

R.H.S. = \((a b+c d+e f) 2\)

= \((\mathrm{bk} \cdot \mathrm{b}+\mathrm{dk} \cdot \mathrm{d}+\mathrm{fk} \cdot \mathrm{f}) 2\)

= \(\left\{\mathrm{k}\left(\mathrm{b}^2+\mathrm{d}^2+\mathrm{f}^2\right)\right\}^2=\mathrm{k}^2\left(\mathrm{~b}^2+\mathrm{d}^2+\mathrm{f}^2\right)^2\)

L.H.S. = R.H.S.

\(\left(a^2+c^2+e^2\right)\left(b^2+c^2+e^2\right)\left(b^2+d^2+f^2\right)=(a b+c d+e f)^2\)         Proved.

“West Bengal Board Class 10 Maths Chapter 5 Ratio and Proportion Exercise 5.3 solutions”

Question 4. If a, b, c, and d are in continued proportion, let us prove that

1. \(\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)=(a b+b c+c d)^2\)

Solution: \(\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)=(a b+b c+c d)^2\) as a, b, c, d are continued proportional.

Let \(\frac{\mathrm{a}}{\mathrm{b}}=\frac{\mathrm{b}}{\mathrm{c}}=\frac{\mathrm{c}}{\mathrm{d}}=\mathrm{k}\)     (where k ≠ 0).

⇒ \(\mathrm{c}=\mathrm{dk} ; \mathrm{b}=\mathrm{ck}=\mathrm{dk} \cdot \mathrm{k}=\mathrm{dk}^2, \mathrm{a}=\mathrm{bk}=\mathrm{dk}^2 \cdot \mathrm{k}=\mathrm{dk}^2\)

L.H.S. = \(\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)\)

= \(\left\{\left(\mathrm{dk}^3\right)^2+\left(\mathrm{dk}^2\right)^2+(\mathrm{dk})^2\right\}\left\{\left(\mathrm{dk}^2\right)^2+(\mathrm{dk})^2+(\mathrm{d})^2\right\}\)

= \(\left(d^2 k^6+d^2 k^4+d^2 k^2\right)\left(d^2 k^4+d^2 k^2+d^2\right)\)

= \(d^2 k^2\left(k^4+k^2+1\right) d^2\left(k^4+k^2+1\right)\)

= \(d^4 k^2\left(k^4+k^2+1\right)^2\)

R.H.S = \((a b+b c+c d)^2\)

= \(\left(\mathrm{dk}^3 \cdot \mathrm{dk}^2+\mathrm{dk}^2 \cdot \mathrm{dk}+\mathrm{dk} \cdot \mathrm{d}\right)^2\)

= \(\left(d^2 k^5+d^2 k^3+d^2 k\right)^2\)

= \(\left\{\mathrm{d}^2 \mathrm{k}\left(\mathrm{k}^4+\mathrm{k}^2+1\right)\right\}^2\)

= \(d^4 k^2\left(k^4+k^2+1\right)^2\)

L.H.S. = R.H.S.   Proved.

 

2. (b – c)²+(c – a)² + (b – d)² = (a – d)²

Solution: To prove, \((b-c)^2+(c-a)^2+(b-d)^2=(a-d)^2\)

L.H.S. = \((b-c)^2+(c-a)^2+(b-d)^2\)

= \(\{\mathrm{dk}(\mathrm{k}-1)\}^2+\left\{\mathrm{dk}\left(1-\mathrm{k}^2\right)\right\}^2+\left\{\mathrm{d}\left(\mathrm{k}^2-1\right)\right\}^2\)

= \(d^2 k^2\left(k^2-2 k+1\right)+d^2 k^2\left(1-2 k^2+k^4\right)+d^2\left(k^4-2 k^3+1\right)\)

= \(d^2\left(k^4-2 k^3+k^2+k^2-2 k^4+k^6+k^4-2 k^2+1\right)\)

= \(d^2\left(k^6-2 k^3+1\right)=d^2\left(k^3-1\right)^2\)

R.H.S. = \((a-d)^2=\left(d k^2-d\right)^2=d^2\left(k^3-1\right)^2\)

∴ L.H.S. = R.H.S. Proved.

 

Question 5:

1. If m/a = n/b, let us show that (m²+n²) (a²+b²) = (am + bn)².

Solution:

Given

m/a = n/b

If m/a = n/b, prove that (m² + n²) (a² + b²) = (am + bn)².

Let, m/a = n/b = k(where k ≠ 0)

m = ak; n=bk

L.H.S = (m²+n²) (a²+b²)

= (a²k² + b²k²) (a²+ b²) = k²(a²+ b²) (a²+ b²) = {k(a²+ b²)}²

R.H.S. = (am bm)²

= (a.ak + b.bk)² = (a²k + b²k)² = {k(a² + b²)}²

  ∴ L.H.S. R.H.S. Proved.

2. If a/b = x/y, let us show that (a + b) (a² + b²) x³ = (x + y)(x² + y²) a³.

Solution: If a/b = x/y, prove that (a + b) (a² + b²) x³ = (x + y)(x² + y²) a³.

Let a/b = x/y = k(where k ≠ 0)

∴ a=bk & x=yk

L.H.S = (a + b) (a² + b²) x³

(bk + b) (b²k² + b²) (yk)³ = b(k + 1) b²(k² + 1) y³k³

= b3k3y (k + 1) (k² + 1)

R.H.S.= (x + y) (x²+ y²) a³

=(yk + y) (y²k² + y²) (b³k³) = y(k + 1) y²(k² + 1) 

= b³k³ b³k³y³(k+1) (k² + 1)

∴ L.H.S. = R.H.S. Proved.

“WBBSE Class 10 Ratio and Proportion Exercise 5.3 solutions explained”

3. If, \(\frac{x}{\mid m-n^2}=\frac{y}{m n-\left.\right|^2}=\frac{z}{n \mid-m^2}\) , let us show that lx + my + ny = 0.

Solution: If \(\frac{x}{\mid m-n^2}=\frac{y}{m n-\left.\right|^2}=\frac{z}{n \mid-m^2}\)

Prove that, lx + my + nz = 0.

Let \(\frac{x}{\mid m-n^2}=\frac{y}{m n-1^2}=\frac{z}{n \mid-m^2}=k\) (where k ≠ 0)

∴ \(\left.x=k\left(\mid m-n^2\right), y=k(m n-l) ; x=k(n)-m^2\right)\)

Now, lx + my + nz

= \(\left.\left.\mathrm{k}(\mathrm{k}) \mathrm{m}-\mathrm{n}^2\right)+\mathrm{mk}(\mathrm{mn}-\mathrm{P})+\mathrm{rk}(\mathrm{n})-\mathrm{m}^2\right)\)

= \(\mathrm{k}\left[1^2 \mathrm{~m}-\ln ^2+\mathrm{m}^2 \mathrm{n}-1 P \mathrm{~m}+\ln ^2-\mathrm{m}^2 \mathrm{n}\right]\)

= k x 0 = 0 Proved.

 

4. If \(\frac{x}{b+c-a}=\frac{y}{c+a-b}=\frac{z}{a+b-c}\) let us show that (b-c) x + (c-a)y + (a-b) x=0.

Solution: \(\frac{x}{b+c-a}=\frac{y}{c+a-b}=\frac{z}{a+b-c}\)

Prove that (b – c)x + (c – a)y + (a – b)z = 0

Let \(\frac{x}{b+c-a}=\frac{y}{c+a-b}=\frac{z}{a+b-c}=k\) (where k ≠ a)

∴ x = k(b + c – a)

y = k(c + a – b)

z = k(a + b – c)

L.H.S. = (b – c)x + (c – a)y + (a – b)z

= (b – c)(b + a – a)k + (c – a)(c + a – b)k + (a – b)(a + b – c)k

= \(k\left[b^2-c^2-a b+a c+c^2-a^2-b c+a b+\left(a^2-b^2\right)-a c+b c\right)\)

= k x 0 = 0 = R.H.S. Proved.

 

5. If \(\frac{x}{y}=\frac{a+2}{a-2}\), let us show that \(\frac{x^2-y^2}{x+y^2}=\frac{4 a}{a^2+4}\).

Solution: If \(\frac{x}{y}=\frac{a+2}{a-2}\)

prove that \(\frac{x^2-y^2}{x+y^2}=\frac{4 a}{a^2+4}\)

squaring both sides.

\(\frac{x^2}{y^2}=\frac{(a+2)^2}{(a-2)^2}\)

or, \(\frac{x^2-y^2}{x^2+y^2}=\frac{(a+2)^2-(a-2)^2}{(a+2)^2+(a-2)^2}\)

or, \(\frac{x^2-y^2}{x^2+y^2}=\frac{\left(a^2+4 a+4\right)-\left(a^2-4 a+4\right)}{\left(a^2+4 a+4\right)+\left(a^2-4 a+4\right)}\)

or, \(\frac{x^2-y^2}{x^2+y^2}\)

= \(\frac{a^2+4 a+4-a^2+4 a+4}{a^2+4 a+4+a^2-4 a+4}\)

= \(\frac{x-4 a}{x\left(a^2+4\right)}\)

∴ \(\frac{x^2-y^2}{x^2+y^2}=\frac{4 a}{a^2+4}\)       Proved.

 

6. If \(x = \frac{8 a b}{a+b}\) let us write by calculating the value of \(\frac{x+4 a}{x-4 a}+\frac{x+4 b}{x-4 b}\)

Solution: \(x = \frac{8 a b}{a+b}\), find the value of \(\frac{x+4 a}{x-4 a}+\frac{x+4 b}{x-4 b}\).

Given, \(\frac{x}{1}=\frac{8 a b}{a+b}\)

\(\frac{x}{4 a}=\frac{2 b}{a+b}\) \(\frac{x+4 a}{x-4 a}=\frac{2 b+a+b}{2 b-a-b}\) \(\frac{x+4 a}{x-4 a}=\frac{3 b+a}{b-a}\)

Again, \(\frac{x}{1}=\frac{8 a b}{a+b}\)

or, \(\frac{x}{4 b}=\frac{2 a}{a+b}\)

or, \(\frac{x+4 b}{x-4 a}=\frac{2 a+a+b}{2 a-a-b}=\frac{3 a+b}{a-b}\)

∴ \(\frac{x+4 a}{x-4 a}+\frac{x+4 b}{x-4 b}=\frac{3 b+a}{b-a}=\frac{3 a+b}{a-b}\)

or, \(=\frac{(3 b+a)}{b-a}-\frac{(3 a+b)}{b-a}\)

= \(\frac{3 b+a-3 a-b}{h-a}\)

= \(\frac{2 b-2 a}{b-a}\)

= \(\frac{2(b-2 a)}{(b-a)}\)

∴ \(\frac{x+4 a}{x-4 a}+\frac{x+4 b}{x-4 b}=2\)

“WBBSE Class 10 Maths Exercise 5.3 Ratio and Proportion problem solutions”

Question 6. If \(\frac{x+y}{3 a-b}=\frac{y+z}{3 b-c}=\frac{z+x}{3 c-a}\), let us show that \(\frac{x+y+z}{a+b+c}=\frac{a x+b y+c z}{a^2+b^2+c^2}\).

Solution. If \(\frac{x+y}{3 a-b}=\frac{y+z}{3 b-c}=\frac{z+x}{3 c-a}\), prove that \(\frac{x+y+z}{a+b+c}=\frac{a x+b y+c z}{a^2+b^2+c^2}\)

Let \(\frac{x+y}{3 a-b}=\frac{y+z}{3 b-c}=\frac{z+x}{3 c-a}=k\) (where k ≠ 0).

∴ x + y = k(3a – b)     …(1)

x + z = k(3b – c)       …(2)

z + x = k(3c – a)

Adding, 2(x + y + z) = k.2(a + b + c)

∴ x + y + z = k(a + b + c)       …(4)

Subtracting (2) from (4), we get

x = k(a – 2b + 2c)

Similarly, y = k(b – 2c + 2a) and z = (c – 2a + 2b)

∴ \(\frac{x+y+z}{a+b+c}=\frac{k(a+b+c)}{(a+b+c)}=k\)

Again, \(\frac{a x+b y+c z}{a^2+b^2+c^2}=\frac{a k(a-2 b+2 c)+b k(b-2 c+2 a)+c k(c-2 a+2 b)}{\left(a^2+b^2+c^2\right)}\)

= \(\frac{k\left(a^2-2 a+b+2 a c+b^2-2 b c+2 a b+c^2-2 a c+2 b c\right)}{\left(a^2+b^2+c^2\right)}\)

= \(\frac{k\left(a^2+b^2+c^2\right)}{\left(a^2+b^2+c^2\right)}=k\)

∴ \(\frac{x+y+z}{a+b+c}=\frac{a x+b y+c z}{a^2+b^2+c^2}\)       Proved.

 

Question 7. If \(\frac{\mathrm{x}}{\mathrm{a}}=\frac{\mathrm{y}}{\mathrm{b}}=\frac{\mathrm{z}}{\mathrm{c}}\) , let us show that \(\frac{x^2-y z}{a^2-b c}=\frac{y^2-z x}{b^2-c a}=\frac{z^2-x y}{c^2-a b}\).

Solution: If \(\frac{\mathrm{x}}{\mathrm{a}}=\frac{\mathrm{y}}{\mathrm{b}}=\frac{\mathrm{z}}{\mathrm{c}}\)

prove that, \(\frac{x^2-y z}{a^2-b c}=\frac{y^2-z x}{b^2-c a}=\frac{z^2-x y}{c^2-a b}\)

Let \(\frac{\mathrm{x}}{\mathrm{a}}=\frac{\mathrm{y}}{\mathrm{b}}=\frac{\mathrm{z}}{\mathrm{c}}=\mathrm{k}\) (where k ≠ 0).

∴ x = ak, y = bk, & z = ck

∴ \(\frac{x^2-y z}{a^2-b c}=\frac{a^2 k^2-b k \cdot c k}{a^2-b c}=\frac{k^2\left(a^2-b c\right)}{a^2-b c}=k^2\)

\(\frac{\mathrm{y}^2-\mathrm{zx}}{\mathrm{b}^2-\mathrm{ca}}=\frac{\mathrm{b}^2 \mathrm{k}^2-\mathrm{ck} \cdot \mathrm{ak}}{\mathrm{b}^2-\mathrm{ca}}=\frac{\mathrm{k}^2\left(\mathrm{~b}^2-\mathrm{ca}\right)}{\left(\mathrm{b}^2-\mathrm{ca}\right)}=\mathrm{k}^2\) \(\frac{z^2-x y}{c^2-a b}=\frac{c^2 k^2-a k \cdot b k}{c^2-a b}=\frac{k^2\left(c^2-a b\right)}{\left(c^2-a b\right)}=k^2\)

∴ \(\frac{x^2-y z}{a^2-b c}=\frac{y^2-z x}{b^2-c a}=\frac{z^2-x y}{c^2-a b}\)    Proved.

 

Question 8.

1. If \(\frac{3 x+4 y}{3 u+4 v}=\frac{3 x+4 y}{3 u-4 v}\) , let us show that \(\frac{x}{y}=\frac{u}{v}\).

Solution: If \(\frac{3 x+4 y}{3 u+4 v}=\frac{3 x+4 y}{3 u-4 v}\) prove that \(\frac{x}{y}=\frac{u}{v}\)

or, \(\frac{3 x+4 y}{3 x-4 y}=\frac{3 u+4 v}{3 u-4 v}\)

or, \(\frac{3 x+4 y+3 x-4 y}{3 x+4 y-3 x+4 y}=\frac{3 u+4 v+3 u-4 v}{3 u+4 v-3 u+4 v}\)

or, \(\frac{6 x}{8 y}=\frac{6 u}{8 v}\)

∴ \(\frac{x}{y}=\frac{u}{v}\)      Proved.

 

2. If (a+b+c+d) : (a+b-c-d) = (a-b+c-d) : (a-b-c+d),let us prove that a:b = c:d.

Solution: If (a + b + c + d):(a + b – c – d) = (a – b + c – d):(a – b – c + d),

Prove that a:b = c:d

\(\frac{a+b+c+d}{a+b-c-d}=\frac{a-b+c-d}{a-b-c+d}\)

or, \(\frac{a+b+c+d+a+b-c-d}{a+b+c+d-a-b+c+d}=\frac{a-b+c-d+a-b-c+d}{a-b+c-d-a+b+c-d}\)

or, \(\frac{2(a+b)}{2(c+d)}=\frac{2 a-2 b}{2 c-2 d}\)

or, \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

or, ac – ad + bc – bd = ac + ad – bc – bd

or, 2bc = 2ad

or, ad = bc

∴ \(\frac{a}{b}=\frac{c}{d}\)

i.e., a:b = c:d Proved.

 

Question 9.

1. If \(\frac{a^2}{b+c}=\frac{b^2}{c+a}=\frac{c^2}{a+b}=1\), let us show that \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=1\).

Solution: If \(\frac{a^2}{b+c}=\frac{b^2}{c+a}=\frac{c^2}{a+b}=1\)

prove that \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=1\)

\(\frac{a^2}{b+c}=\frac{b^2}{c+a}=\frac{c^2}{a+b}=1\)

∴ \(a^2=b+c ; b^2=c+a ; c^2=a+b\)

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)

= \(\frac{a}{a+a^2}+\frac{b}{b+b^2}+\frac{1}{c+c^2}\)

= \(\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}\)

= \(\frac{a+b+c}{a+b+c}=1\)     Proved.

2. If x² : (by+cz)=y² :(cz + ax) = z² : (ax+by)=1, let us prove that \(\frac{a}{a+x}+\frac{b}{b+y}+c / c+z=1\).

Solution: If \(x^2:(b y+c z)=y^2:(c z+a x)=z^2:(a x+b y)=1\)

Prove that \(\frac{a}{a+x}+\frac{b}{b+y}+c / c+z=1\)

\(\frac{x^2}{b y+c z}=\frac{y^2}{c z+a x}=\frac{z^2}{a x+b y}=1\)

∴ \(x^2=b y+c z ; y^2=c z+a x ; z^2=a x+b y\)

L.H.S. = \(\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}\)

= \(\frac{a x}{a x+x^2}+\frac{\text { by }}{b y+y^2}+\frac{c z}{c z+z^2}\)

= \(\frac{\mathrm{ax}}{\mathrm{ax}+\mathrm{by}+\mathrm{cz}}+\frac{\mathrm{by}}{\mathrm{by}+\mathrm{cz}+\mathrm{ax}}+\frac{\mathrm{by}}{\mathrm{by}+\mathrm{cz}+\mathrm{ax}}\)

= \(\frac{a x+b y+c z}{a x+b y+c z}=1\)      Proved.

“Class 10 WBBSE Maths Exercise 5.3 Ratio and Proportion step-by-step solutions”

Question 10.

1. If \(\frac{x}{x a+y b+z c}=\frac{y}{y a+z b+x c}=\frac{z}{z a+x b+y c}\) and x+y+z ≠ 0, let us show that each ratio is equal to \(\frac{1}{a+b+c}\).

Solution: Given, \(\frac{x}{x a+y b+z c}=\frac{y}{y a+z b+x c}=\frac{z}{z a+x b+y c}\)

& x + y + z ≠ 0.

Prove that each ratio = \(\frac{1}{a+b+c}\)

= \(\frac{x}{x a+y b+z c}=\frac{y}{y a+z b+x c}=\frac{z}{z a+x b+y c}=\frac{x+y+z}{x a+y b+z c+y a+z b+x c+z a+x b+y c}\)

= \(\frac{(x+y+z)}{a(x+y+z)+b(x+y+z)+c(x+y+z)}=\frac{(x+y+z)}{(x+y+z)+(a+b+c)}\)

= \(\frac{1}{a+b+c}\)    Proved.

2. If \(\frac{x^2-y z}{a}=\frac{y^2-z x}{b}=\frac{z^2-x y}{c}\), let us prove that (a+b+c) (x+y+z) = ax +by+cz.

Solution: \(\frac{x^2-y z}{a}=\frac{y^2-z x}{b}=\frac{z^2-x y}{c}\)

Prove that (a + b + c)(x + y + z) = ax + by + cz

Let \(\frac{x^2-y z}{a}=\frac{y^2-z x}{b}=\frac{z^2-x y}{c}=\frac{1}{k}\) (where ≠ 0).

∴ \(a=k\left(x^2-y z\right) ; b=k\left(y^2-z x\right) ; c=k\left(z^2-x y\right)\)

L.H.S. = (a + b + c)(x + y + z)

= \(\left(k\left(x^2-y z+y^2-z x+z^2-x y 1\right)(x+y+z)\right.\)

= \(k(x+y+z)\left(x^2+y^2+z^2-x y-y z-z x\right)=k\left(x^2+y^2+z^2-3 x y z\right)\)

R.H.S. = \(\mathrm{ax}+\mathrm{by}+\mathrm{cz}=\mathrm{k}\left(\mathrm{x}^2-\mathrm{yz}\right) \mathrm{x}+\mathrm{k}\left(\mathrm{y}^2-\mathrm{zx}\right) \mathrm{y}+\mathrm{k}\left(\mathrm{z}^2-\mathrm{xy}\right) \mathrm{z}\)

= \(k\left(x^2-x y z+y^2-x y z+z^2-x y z\right)\)

= \(\mathrm{k}\left(\mathrm{x}^2+\mathrm{y}^2+\mathrm{z}^2-\mathrm{xy} 2\right)\)

∴ L.H.S. = R.H.S.         Proved.

3. If \(\frac{a}{y+z}=\frac{b}{z+x}=\frac{c}{x+y}\), let us prove that \(\frac{a(b-c)}{y^2-z^2}=\frac{b(c-a)}{z^2-x^2}=\frac{c(a-b)}{x^2-y^2}\).

Solution: If \(\frac{a}{y+z}=\frac{b}{z+x}=\frac{c}{x+y}\)

Prove that \(\frac{a(b-c)}{y^2-z^2}=\frac{b(c-a)}{z^2-x^2}=\frac{c(a-b)}{x^2-y^2}\)

Let, \(\frac{a}{y+z}=\frac{b}{z+x}=\frac{c}{x+y}=k\)  (where k ≠ 0)

∴ a = k(y + z); b = k(z + x); c = k(x + y)

\(\frac{a(b-c)}{y^2-z^2}=\frac{k(y+z) k(z+x-x-y)}{y^2-z^2}=\frac{k^2(z+y)(z-y)}{-(y+z)(z-y)}=-k^2\) \(\frac{b(c-a)}{z^2-x^2}=\frac{k(z+x) k(x+y-y-z)}{z^2-x^2}=\frac{k^2(z+x)(z-y)}{-(z+x)(x-y)}=-k^2\) \(\frac{c(a-b)}{x^2-y^2}=\frac{k(x+y) k(y+z-z-x)}{x^2-y^2}=\frac{k^2(x+y)(x-y)}{-(x+y)(x-y)}=-k^2\)

∴ \(\frac{a(b-c)}{y^2-z^2}=\frac{b(c-a)}{z^2-x^2}=\frac{c(a-b)}{x^2-y^2}\)  Proved.

“Class 10 WBBSE Maths Exercise 5.3 solutions for Ratio and Proportion”

Chapter 5 Ration And Proportion Exercise 5.3 Multiple Choice Questions

1. The fourth proportion of 3, 4, and 6 are

1. 8
2. 10
3. 12
4. 24

Answer. The 4th proportional of 3,4 & 6 =4×6/3 = 8———-(1)

2. The 3rd proportion of 8 and 12 is

1. 12
2. 16
3. 18
4. 20


Answer.
The 3rd proportional of 8 &
12 = 12 x 12/8 = 18 ———-(3)

3. The mean proportion of 16 and 25 is

1. 400
2. 100
3. 20
4. 40

Answer. The mean proportional of 16 & 25 = √16×25 = 4 x 5=20———-(3)

4. a is a positive number and if a: 27/64 = 3/4: a, then the value of a is

1. 81/256
2. 9
3. 9/16
4. 16/9

Answer: If a: 27/64 = 3/4: a

∴ a= √27/64 x 3/4 = √81/256 = 9/16—————–(3)

“WBBSE Class 10 Chapter 5 Ratio and Proportion Exercise 5.3 solution guide”

5. If 2a = 3b = 4c, then a:b:c is

1. 3:4:6
2. 4:3:6
3. 3:6:4
4. 6:4:3

Answer: If 2a=3b=4c, find a:b:c

or, 2a/12 = 3b/12 = 4c/12

or a/6 = b/4 = c/3

∴ a:b:c = 6:4:3——–(4)

Chapter 5 Ration And Proportion Exercise 5.3 True or False

1. Compound ratio of ab:c², bc:a² and ca:b² is 1:1

Answer: ab/c² x bc/a² x ca/b² = 1:1

True

2. x³y, x²y² and xy³ are continued proportional.

Answer: If x³y/x²y² = x²y²/xy³

or, x/y = x/y

Chapter 5 Ration And Proportion Exercise 5.3 True Or False

1. If the product of three positive consecutive numbers is 64, then their mean proportion is 4

2. If a: 2 = b: 5 = c: 8, then 50% of a = 20% of b = 12.5%  of c.

Chapter 5 Ration And Proportion Exercise 5.3 Short Answers

Question 1. If a/2 = b/3 = c/a = 2a-3b+4c/p , let us find the value of p.

Solution: \(\frac{\mathrm{a}}{2}=\frac{\mathrm{b}}{3}=\frac{\mathrm{c}}{4}=\frac{2 \mathrm{a}-3 \mathrm{~b}+4 \mathrm{c}}{\mathrm{p}}=\mathrm{k} \text { (let) }\)

∴ a = 2k, b = 3k & c = 4k

∴ 2a – 3b + 4c = pk

or, 2.2k – 3.3k + 4.4k = pk

11k = p.k

∴ p = 11.

“West Bengal Board Class 10 Maths Exercise 5.3 Ratio and Proportion solutions”

Question 2. If \(\frac{3 x-5 y}{3 x+5 y}=\frac{1}{2}\), let us find the value of \(\frac{3 x^2-5 y^2}{3 x^2+5 y^2}\)

Solution: If \(\frac{3 x-5 y}{3 x+5 y}=\frac{1}{2}\) or, 6x – 10y = 3x + 5y

or, 6x – 3x = 10y + 5y

or, 3x + 5y

∴ x = 5y

\(\frac{3 x^2-y^2}{3 x^2+5 y^2}=\frac{3(5 y)^2-5 y^2}{3(5 y)^2+5 y^2}\)

= \(\frac{75 y^2-5 y^2}{75 y^2+5 y^2}\)

= \(\frac{70 y^2}{80 y^2}=\frac{7}{8}\)

Leave a Comment