WBBSE Solutions For Class 10 Maths Chapter 9 Quadratic surd Exercise 9.3

Chapter 9 Quadratic surd Exercise 9.3

Question 1. If m + 1/m = √3, let us calculate the simplified value of (i) m2 + 1/m2 and  (ii) m3 + 1/m3.

Solution (1):  m2 + 1/m2 = (m + 1/m)2 – 2.m.1/m

=(√3)2-2

=3-2 

= 1 

Read and Learn More WBBSE Solutions For Class 10 Maths

Solution (2): m3 + 1/m3 = (m+1/m)3 -3.m.1/m(m+1/m)

 =(√3)2-3√3

= 3√3-3√3 

=0 Ans.

2. Let us show that√5+√3 / √5-√3 – √5 – √3 / √5+ √3 = 2√15.

Solution: √5+√3 / √5-√3 – √5 – √3 / √5+ √3 = 2√15

L.H.S.= √5+√3 / √5-√3 – √5-√3 / √5+√3.

= (√5+√3)²-(√5-√3)² / (√5-√3) (√5+√3)

= (5+3+2√15)-(5+3-2√15) / (√5)²-(√3)²

= 8+2√15-8+2√15 /5-3

=4√15 / 2

= 2√15 R.H.S.

Question 2.

1. √2 (2+ √3) / √3(√3+1)  – √2 (2-√3) /√3(√3-1)

Solution : √2 (2+ √3) / √3(√3+1)  – √2 (2-√3) /√3(√3-1)

= √2 / √3 [2+√3 / √3+1 – 2-√3 / √3-1]

= √2 (2√3 −2+3−√3)-(2√3+2−3−√3) / (√3)2-(1)2

= √2 / √3[2√3-2+3-√3-2√3-2+3+√3 / 3-1]

= √2 / √3 x 6-4/2

= √2 / √3 x 2/2

= √2 x √3 / √3.√3

=√6/3

√2 (2+ √3) / √3(√3+1)  – √2 (2-√3) /√3(√3-1) =√6/3

WBBSE Solutions For Class 10 Maths Chapter 9 Quadratic surd Exercise 9.3

2. 3√7 / √5+ √2 – 5√5 / √2 + √7 + 2√2 / √7 + √5

Solution: 3√7 / √5+ √2 – 5√5 / √2 + √7 + 2√2 / √7 + √5

= 3√/7(√5 – √2) / (√5+√2)(√5+√2) –  5√5(√7-√2) / (√7+√2)(√7-√2) + 2√5/(√7+√5)(√7-√5)

= (√5+√2) √5-√2) (√7 + √2) √7 – √2) + (√7+ √5 √7-√5)

= 3√7(√5-√2)/(5)2-(√2)2 – 5√5(√7-√2) / (√7)2-(√2)2 + 2√2 / (√7)2-(√5)2

= 3√7(√5-√2) /5-2 – 5√5(√7-√2)/7-2 + 2√2(√7-√5)/7-5

= 3√2(√5-√2)/3 – 5√5(√7-√2)/5 + 2√2(√7-√5)/2

=√35-√14-√35+√10+√14-√10

= 0

3√7 / √5+ √2 – 5√5 / √2 + √7 + 2√2 / √7 + √5 = 0

3. \(\frac{4 \sqrt{3}}{2-\sqrt{2}}-\frac{30}{4 \sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}\)

Solution:

\(\frac{4 \sqrt{3}}{2-\sqrt{2}}-\frac{30}{4 \sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}\)

= \(\frac{4 \sqrt{3}(2+\sqrt{2})}{(2-\sqrt{2})(2+\sqrt{2})}-\frac{30(4 \sqrt{3}+\sqrt{18})}{(4 \sqrt{3}-\sqrt{18})(4 \sqrt{3}+\sqrt{18})}-\frac{\sqrt{18}(3+\sqrt{12})}{(3-\sqrt{12})(3+\sqrt{12})}\)

= \(\frac{4 \sqrt{3}(2+\sqrt{2})}{(2)^2(\sqrt{2})^2}-\frac{30(4 \sqrt{3}+\sqrt{2})}{(4 \sqrt{3})^2-(\sqrt{18})^2}-\frac{3 \sqrt{2}(3+2 \sqrt{3})}{(3)^2-(\sqrt{12})^2}\)

= \(\frac{4 \sqrt{3}(2+\sqrt{2})}{4-2}-\frac{30(4 \sqrt{3}+\sqrt{2})}{16 \times 3-18}-\frac{3 \sqrt{2}(3+2 \sqrt{3})}{9-12}\)

= \(\frac{4 \sqrt{3}(2+\sqrt{2})}{2}-\frac{30(4 \sqrt{3}+3 \sqrt{2})}{30}-\frac{3(3+2 \sqrt{3})}{-3}\)

= \(4 \sqrt{3}+2 \sqrt{6}-4 \sqrt{3}-3 \sqrt{2}+2 \sqrt{6}\)

= 4√6

 

4. \(\frac{3 \sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4 \sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)

Solution:

\(\frac{3 \sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4 \sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)

= \(\frac{3 \sqrt{2}(\sqrt{6}-\sqrt{3})}{(\sqrt{6}+\sqrt{3})(\sqrt{6}-\sqrt{3})}-\frac{4 \sqrt{2}(\sqrt{6}-\sqrt{2})}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})}+\frac{\sqrt{6}(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}\)

= \(\frac{3 \sqrt{2}(\sqrt{6}-\sqrt{3})}{6-3}-\frac{4 \sqrt{3}(\sqrt{6}-\sqrt{2})}{6-2}+\frac{\sqrt{6}(\sqrt{3}-\sqrt{2})}{3-2}\)

= \(\frac{3 \sqrt{2}(\sqrt{6}-\sqrt{3})}{3}-\frac{4 \sqrt{3}(\sqrt{6}-\sqrt{2})}{4}+\frac{\sqrt{6}(\sqrt{3}-\sqrt{2})}{1}\)

= \(\sqrt{12}-\sqrt{6}-\sqrt{18}+\sqrt{6}+\sqrt{18}-\sqrt{12}\)

= 0

Question 3. If x = 2, y = 3 and z = 6 let us write by calculating the value of \(\frac{3 \sqrt{x}}{\sqrt{y}+\sqrt{z}}-\frac{4 \sqrt{y}}{\sqrt{z}+\sqrt{x}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}\)

Solution: \(\frac{3 \sqrt{x}}{\sqrt{y}+\sqrt{z}}-\frac{4 \sqrt{y}}{\sqrt{z}+\sqrt{x}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}\)

= \(\frac{3 \sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4 \sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)

= \(\frac{3 \sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{4 \sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)

= \(\frac{3 \sqrt{2}(\sqrt{6}-\sqrt{3})}{(\sqrt{6}+\sqrt{3})(\sqrt{6}+\sqrt{3})}-\frac{4 \sqrt{3}(\sqrt{6}-\sqrt{2})}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})}+\frac{\sqrt{6}(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}\)

= \(\frac{3 \sqrt{2}(\sqrt{6}-\sqrt{3})}{6-3}-\frac{4 \sqrt{3}(\sqrt{6}-\sqrt{2})}{6-2}+\frac{\sqrt{6}(\sqrt{3}-\sqrt{2})}{3-2}\)

= \(\frac{3 \sqrt{2}(\sqrt{6}-\sqrt{3})}{3}-\frac{4 \sqrt{3}(\sqrt{6}-\sqrt{2})}{4}+\frac{\sqrt{6}(\sqrt{3}-\sqrt{2})}{1}\)

= \(\sqrt{12}-\sqrt{6}-\sqrt{18}+\sqrt{6}+\sqrt{18}-\sqrt{12}\)

= 0

 

Question 4. If x = √7+√6 let us calculate the simplified values of

1. x – 1/x

Solution: x-1/x = (√7+√6)+(√7-√6)

= √7+√6 – √7 +√6

=2√6

x-1/x =2√6

2. x + 1/x

Solution: x – 1/x

= (√7+√6) + (√7-√6)

=√7+√6+√7-√6

=2√7

x – 1/x = 2√7

3. x²+1/x²

Solution: x²+1/x²

=(x+1/x)² – 2.x.1/x

=(2√7)² – 2.1

= 28-2

= 26

x²+1/x² = 26

4. x³ +1/x³

Solution: x³+1/x³

= (x+1/x)³ – 3.x.1/x(x+1/x)

=(2√7)³-3.1.2√7

=8 x 7√7 – 6√7

= 50√7

x³+1/x³ = 50√7

Question 5. x+√x2-1/x-√x2-1+ x-√x2-1/x+√x2-1 If the simplified value is 14, let us write by calculating what is the value of x.

Solution: \(\frac{x+\sqrt{x^2-1}}{x-\sqrt{x^2-1}}+\frac{x-\sqrt{x^2-1}}{x+\sqrt{x^2-1}}\)

\(\frac{\left(x+\sqrt{x^2-1}\right)^2+\left(x-\sqrt{x^2-1}\right)}{\left(x-\sqrt{x^2-1}\right)\left(x+\sqrt{x^2-1}\right)}\)

= \(\frac{x^2+x^2-1+2 x \sqrt{x^2-1}+x^2+x^2-1-2 x \sqrt{x^2-1}}{(x)^2-\left(\sqrt{x^2-1}\right)^2}\)

= \(\frac{4 x^2-2}{x^2-\left(x^2-1\right)}=\frac{4 x^2-2}{x^2-x^2+1}=4 x^2-2\)

According to the problem,

4x2 – 2 = 14

Or, 4x2 = 14 + 2 = 16

x2 = \(\frac{16}{4}\) = 4

\(x= \pm \sqrt{4}= \pm 2\)

 

Question 6. If a= √5+1 / √5-1 and b= √5-1/√5+1, let us following expressions

\(a+b=\frac{\sqrt{5}+1}{\sqrt{5}-1}+\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{(\sqrt{5}+1)^2+(\sqrt{5}-1)^2}{(\sqrt{5}-1)(\sqrt{5}+1)}\)

= \(\frac{5+1+2 \sqrt{5}+5+1-2 \sqrt{5}}{5-1}=\frac{12}{4}=3\)

& \(a-b=\frac{\sqrt{5}+1}{\sqrt{5}-1}-\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{(\sqrt{5}+1)^2-(\sqrt{5}-1)^2}{(\sqrt{5}-1)(\sqrt{5}+1)}\)

= \(\frac{(5+1+2 \sqrt{5})-(5+1-2 \sqrt{5})}{5-1}=\frac{5+1+2 \sqrt{5}-5-1+2 \sqrt{5}}{4}=\frac{4 \sqrt{5}}{4}=\sqrt{5}\)

ab = \(\frac{\sqrt{5}+1}{\sqrt{5}-1} \times \frac{\sqrt{5}-1}{\sqrt{5}+1}=1\)

 

1. \(\frac{a^2+a b+b}{a^2-a b+b^2}\)

Solution: \(\frac{a^2+a b+b}{a^2-a b+b^2}\)

= \(\frac{a^2+b^2+a b}{a^2+b^2-a b}\)

= \(\frac{(a+b)^2-2 a b+a b}{(a+b)^2-2 a b-a b}\)

= \(\frac{(a+b)^2-a b}{(a+b)^2-3 a b}\)

= \(\frac{(3)^2-1}{(3)^2-3.1}\)

= \(\frac{9-1}{9-3}\)

= \(\frac{8}{6}\)

= \(\frac{4}{3}\)

 

2. (a-b)³/(a+b)³

Solution: (a-b)³/(a+b)³

= (√5)³/(3)

=5√5/27

(a-b)³/(a+b)³ =5√5/27

3. \(\frac{3 a^2+5 a b+3 b^2}{3 a^2-5 a b+3 b^2}\)

Solution: \(\frac{3 a^2+5 a b+3 b^2}{3 a^2-5 a b+3 b^2}\)

= \(\frac{3 a^2+6 a b+3 b^2-a b}{3 a^2-6 a b+3 b^2+a b}\)

= \(\frac{3\left(a^2+2 a b+b^2\right)-1}{3\left(a^2-2 a b+b^2\right)+1}\)

= \(\frac{3(a+b)^2-a b}{3(a-b)^2+a b}\)

= \(\frac{3(3)^2-1}{3(\sqrt{5})^2+1}\)

= \(\frac{27-1}{3.5+1}\)

= \(\frac{26}{16}\)

= \(\frac{13}{8}\)

= \(1 \frac{5}{8}\)

 

4. \(\frac{a^3+b^3}{a^3-b^3}\)

Solution: \(\frac{a^3+b^3}{a^3-b^3}\)

= \(\frac{(a+b)^3-3 a b(a+b)}{(a-b)^3+3 a b(a-b)}\)

= \(\frac{(3)^3-3.1 \cdot 3}{(\sqrt{5})^3+3 \cdot 1 \cdot \sqrt{5}}\)

= \(\frac{27-9}{8 \sqrt{5}}\)

= \(\frac{18 \sqrt{5}}{8 \sqrt{5} \cdot \sqrt{5}}\)

= \(\frac{18 \sqrt{5}}{8 \times 5}\)

= \(\frac{9 \sqrt{5}}{20}\)

 

Question 7. If x = 2 + √3, y = 2-√3, let us calculate the simplified value of:

Solution : x = 2+√3

∴ 1/x = 1/2-√3

= 2-√3/(2+√3)(2-√3)

=2-√3/4-3

=2-√3/1

2-√3

Again, y=2-√3

∴ 1/y = 1/2- √3

=(2+√3)/(2+√3)(2-√3)

=2+√3/4-3

=2+√3/1

2+√3

1. x-1/x

Solution: x-1/x

=(2+√3) – (2-√3)

= 2+√3-2+√3

=2√3

x-1/x =2√3

2. y²+1/y²

Solution: y²+1/y²

=(y+1/y)²-2.y.1/y

={(2-√3)+(2+√3)}²

=(2-√3+2+√3)²-2

={(4)²-2)}

= 16-2

= 14

y²+1/y² = 14

3. x³-1/x³

Solution: x³-1/x³

= (x-1/x)³+3.x.1/x(x-1/x)

=(2√3)³+3.1.2√3

=8.3.√3+6√3

=24√3+√3

=30√3

x³-1/x³ =30√3

4. xy+1/xy

Solution: xy+1/xy

=x.y

=(2+√3)(2-√3)

=(2)²-(√3)²

= 4-3

= 1

∴ xy +1/xy

1+1/1

=1+1

=2

xy+1/xy =2

5. 3x²-5xy+3y²

Solution: 3x²-5xy+3y²

=3x²-6xy+3y²+xy

=3(x²-2xy+y²)+xy

=3(x-y)²+xy

=3{(2+√3)-(2-√3)}²+1

=3 x 4 x3 +1

=36+1

=37

3x²-5xy+3y² =37

Question 8. If x = √7+√3/√7-√3 and xy=1, let us show that x²+xy+y²/x²-xy+y² = 12/11

Solution:

\(\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}} \& x y=1, show that \frac{x^2+x y+y^2}{x^2-x y+y^2}\)

x = \(\frac{(\sqrt{7}+\sqrt{3})(\sqrt{7}+\sqrt{3})}{(\sqrt{7}-\sqrt{3})(\sqrt{7}+\sqrt{3})}=\frac{(\sqrt{7}+\sqrt{3})^2}{(\sqrt{7})^2(\sqrt{3})^2}=\frac{7+3+2 \cdot \sqrt{7} \cdot \sqrt{3}}{7-3}=\frac{10+2 \sqrt{21}}{4}\)

= \(\frac{2(5+\sqrt{21})}{4}=\frac{5+\sqrt{21}}{2}\)

As xy = 1

∴ \(y=\frac{1}{x}=\frac{2}{5+\sqrt{21}}=\frac{2(5-\sqrt{21})}{(5+\sqrt{21})(5-\sqrt{21})}\)

= \(\frac{2(5-\sqrt{21})}{(5)^2-(\sqrt{21})^2}=\frac{2(5-\sqrt{21})}{25-21}=\frac{2(5-\sqrt{21})}{4}=\frac{5-\sqrt{21}}{2}\)

x + y = \(\frac{5+\sqrt{21}}{2}+\frac{5-\sqrt{21}}{2}=\frac{5+\sqrt{21}+5-\sqrt{21}}{2}=\frac{10}{2}=5\)

Now, \(\frac{x^2+x y+y^2}{x^2-x y+y^2}=\frac{x^2+y^2+x y}{x^2+y^2-x y}=\frac{x^2+y^2+x y}{x^2+y^2-x y}\)

= \(\frac{(x+y)^2-x y}{(x+y)^2-3 x y}=\frac{(5)^2-1}{(5)^2-3.1}=\frac{25-1}{25-3}=\frac{24}{22}=\frac{12}{11}\)

 

Chapter 9 Quadratic surd Exercise 9.3 Multiple Choice Question

Question 1. If x=2+√3, the value of x + 1/x is

1. 2
2. 2√3
3. 4
4. 2-√3

Solution: 

x=2+√3

.. 1/x

=1/ 2+√3

=1x(2-√3)/(2+√3)(2-√3)

=2-√3/4-3

2-√3/1

2-√3

.. x+1/x = 2+v3+2-√3

=4

x+1/x =4

Answer. 3. 4

Question 2. If p + q = √13 and p-q= √5 then the value of pq is

1. 2
2. 18
3. 9
4. 8

Solution: We know,

pq = (p+q-p-q)/4 

=(√13)2-(√5)2/4

= 13-5/4

=8/4

=2

The value of pq is 2

Answer. 1. 2

Question 3. If a + b = √5 and a-b=√3, the value of (a² + b²) is

1. 8
2. 4
3. 2
4. 1

Solution: a²+ b²= (a+b)²+(a-b)2/2

= (√5)²+(√3)2/2

= 5+3/2

=8/2

=3

The value of (a²+ b²) is 3

Answer. 1. 8

Question 5. If we subtract √5 from √125, the value is

1. √80
2. √120
3. √100
4. none of these

Solution: √125-√5 

= √5x5x5

= √5x5x5-√5-√5

=4√5

= √16×5

= 80

√125-√5  = 80

Answer. 1. √80

Question 6. The product of the bracketed terms (5 -√3), (√3 -1), (5+ √3), and (√3+1) is

1. 22
2. 44
3. 2
4. 11

Solution: (5-√3) (5+√3) (√3-1) (√3+1)

= {(5)2- (√3)2} {(√3)2- (1)}

=(23) x (3-1)

=22 x 2 

= 44

(5-√3) (5+√3) (√3-1) (√3+1) = 44

Answer. 2. 44

Chapter 9 Quadratic surd Exercise 9.3 True Or False

1. √75 and √147 are similar surds.

Solution: √75 & √5x5x3

=5√3 & √147

= √7x7x3 

=7√3

√75 & √5x5x3 =7√3

Answer. True

2.√π is a quadratic surd. 

Answer. False

Chapter 9 Quadratic surd Exercise 9.3 Fill In The Blanks

1. 5√11 is an Irrational number (rational/irrational)

2. Conjugate surd of (√3-5) is   -√3-5.

3. If the product and sum of two quadratic surds is a rational number, then the surds are Irrational surd.

Chapter 9 Quadratic surd Exercise 9.3 Short Answers

Question 1. If x=3+2√2, let us write the value of x + 1/x

Solution: 1/x =1/3 +2√2

1x(3-2√2) / (3+2√2) (3-2√2)

=3-2√2/9-8

=3-2√2

=3+2√2+3-2√2=6

x + 1/x =6

Question 2. Let us write which one is greater between (√15+ √3) and (√10+ √8). 

Solution: Now, (√15+√3)2 =(√15)2+(√3)2+2.√15.√3

= 15+ 3 + 2√45

= 18+ 2√45

(√10 + √8)2 = (√10)2+(√8)2 +2. √10 √8 

= 10 +8 +2√80 

= 18+2√80

As 2√80 is greater than 2√45.

(√10+√8)2 > (√15+√3)2

(√10+√8) is greater than (√15+√3).

Question 3. Let us write two quadratic surds whose product is a rational number. 

Solution: (5+2√6) & (5-2√6).

Question 4. Let us write what should be subtracted from √72 to get √32.

Solution. Required number = √72-√32 = √6x6x2 – √4x4x2 

=6√2 -4√2 

= 2√2.

Question 5. Let us write the simplified value of (1/√2+1 + 1/√3+ √2 + 1/√4+ √3)

Solution: 1(√2-1)/(√2+1) (√2-1) + 1(√3-√2)/(√3 + √2) (√3-√2)+1(√4-√3)/(√4+ √3)(√4-√3)

=√2-1/2 -1 +  √3-√2/3-2 +  √4-√34-3

=√2-1+√3-√2+√4-√3

= √4-1

=2-1

= 1.

(1/√2+1 + 1/√3+ √2 + 1/√4+ √3) = 1

Leave a Comment