WBBSE Solutions For Class 10 Maths Chapter 9 Quadratic surd Exercise 9.3

Chapter 9 Quadratic surd Exercise 9.3

Question 1. If m + 1/m = √3, let us calculate the simplified value of (i) m2 + 1/m2 and  (ii) m3 + 1/m3.

Solution (1):  m2 + 1/m2 = (m + 1/m)2 – 2.m.1/m

=(√3)2-2

=3-2 

= 1 

Read and Learn More WBBSE Solutions For Class 10 Maths

Solution (2): m3 + 1/m3 = (m+1/m)3 -3.m.1/m(m+1/m)

 =(√3)2-3√3

= 3√3-3√3 

=0 Ans.

“WBBSE Class 10 Maths Quadratic Surd Exercise 9.3 solutions”

2. Let us show that√5+√3 / √5-√3 – √5 – √3 / √5+ √3 = 2√15.

Solution: √5+√3 / √5-√3 – √5 – √3 / √5+ √3 = 2√15

L.H.S.= √5+√3 / √5-√3 – √5-√3 / √5+√3.

= (√5+√3)²-(√5-√3)² / (√5-√3) (√5+√3)

= (5+3+2√15)-(5+3-2√15) / (√5)²-(√3)²

= 8+2√15-8+2√15 /5-3

=4√15 / 2

= 2√15 R.H.S.

Question 2.

1. √2 (2+ √3) / √3(√3+1)  – √2 (2-√3) /√3(√3-1)

Solution : √2 (2+ √3) / √3(√3+1)  – √2 (2-√3) /√3(√3-1)

= √2 / √3 [2+√3 / √3+1 – 2-√3 / √3-1]

= √2 (2√3 −2+3−√3)-(2√3+2−3−√3) / (√3)2-(1)2

= √2 / √3[2√3-2+3-√3-2√3-2+3+√3 / 3-1]

= √2 / √3 x 6-4/2

= √2 / √3 x 2/2

= √2 x √3 / √3.√3

=√6/3

√2 (2+ √3) / √3(√3+1)  – √2 (2-√3) /√3(√3-1) =√6/3

WBBSE Solutions For Class 10 Maths Chapter 9 Quadratic surd Exercise 9.3

2. 3√7 / √5+ √2 – 5√5 / √2 + √7 + 2√2 / √7 + √5

Solution: 3√7 / √5+ √2 – 5√5 / √2 + √7 + 2√2 / √7 + √5

= 3√/7(√5 – √2) / (√5+√2)(√5+√2) –  5√5(√7-√2) / (√7+√2)(√7-√2) + 2√5/(√7+√5)(√7-√5)

= (√5+√2) √5-√2) (√7 + √2) √7 – √2) + (√7+ √5 √7-√5)

= 3√7(√5-√2)/(5)2-(√2)2 – 5√5(√7-√2) / (√7)2-(√2)2 + 2√2 / (√7)2-(√5)2

= 3√7(√5-√2) /5-2 – 5√5(√7-√2)/7-2 + 2√2(√7-√5)/7-5

= 3√2(√5-√2)/3 – 5√5(√7-√2)/5 + 2√2(√7-√5)/2

=√35-√14-√35+√10+√14-√10

= 0

3√7 / √5+ √2 – 5√5 / √2 + √7 + 2√2 / √7 + √5 = 0

“West Bengal Board Class 10 Maths Chapter 9 Quadratic Surd Exercise 9.3 solutions”

3. \(\frac{4 \sqrt{3}}{2-\sqrt{2}}-\frac{30}{4 \sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}\)

Solution:

\(\frac{4 \sqrt{3}}{2-\sqrt{2}}-\frac{30}{4 \sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}\)

= \(\frac{4 \sqrt{3}(2+\sqrt{2})}{(2-\sqrt{2})(2+\sqrt{2})}-\frac{30(4 \sqrt{3}+\sqrt{18})}{(4 \sqrt{3}-\sqrt{18})(4 \sqrt{3}+\sqrt{18})}-\frac{\sqrt{18}(3+\sqrt{12})}{(3-\sqrt{12})(3+\sqrt{12})}\)

= \(\frac{4 \sqrt{3}(2+\sqrt{2})}{(2)^2(\sqrt{2})^2}-\frac{30(4 \sqrt{3}+\sqrt{2})}{(4 \sqrt{3})^2-(\sqrt{18})^2}-\frac{3 \sqrt{2}(3+2 \sqrt{3})}{(3)^2-(\sqrt{12})^2}\)

= \(\frac{4 \sqrt{3}(2+\sqrt{2})}{4-2}-\frac{30(4 \sqrt{3}+\sqrt{2})}{16 \times 3-18}-\frac{3 \sqrt{2}(3+2 \sqrt{3})}{9-12}\)

= \(\frac{4 \sqrt{3}(2+\sqrt{2})}{2}-\frac{30(4 \sqrt{3}+3 \sqrt{2})}{30}-\frac{3(3+2 \sqrt{3})}{-3}\)

= \(4 \sqrt{3}+2 \sqrt{6}-4 \sqrt{3}-3 \sqrt{2}+2 \sqrt{6}\)

= 4√6

Class 10 Maths Class 10 Social Science
Class 10 English Class 10 Maths
Class 10 Geography Class 10 Geography MCQs
Class 10 History Class 10 History MCQs
Class 10 Life Science Class 10 Science VSAQS
Class 10 Physical Science Class 10 Science SAQs

4. \(\frac{3 \sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4 \sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)

Solution:

\(\frac{3 \sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4 \sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)

= \(\frac{3 \sqrt{2}(\sqrt{6}-\sqrt{3})}{(\sqrt{6}+\sqrt{3})(\sqrt{6}-\sqrt{3})}-\frac{4 \sqrt{2}(\sqrt{6}-\sqrt{2})}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})}+\frac{\sqrt{6}(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}\)

= \(\frac{3 \sqrt{2}(\sqrt{6}-\sqrt{3})}{6-3}-\frac{4 \sqrt{3}(\sqrt{6}-\sqrt{2})}{6-2}+\frac{\sqrt{6}(\sqrt{3}-\sqrt{2})}{3-2}\)

= \(\frac{3 \sqrt{2}(\sqrt{6}-\sqrt{3})}{3}-\frac{4 \sqrt{3}(\sqrt{6}-\sqrt{2})}{4}+\frac{\sqrt{6}(\sqrt{3}-\sqrt{2})}{1}\)

= \(\sqrt{12}-\sqrt{6}-\sqrt{18}+\sqrt{6}+\sqrt{18}-\sqrt{12}\)

= 0

“WBBSE Class 10 Quadratic Surd Exercise 9.3 solutions explained”

Question 3. If x = 2, y = 3 and z = 6 let us write by calculating the value of \(\frac{3 \sqrt{x}}{\sqrt{y}+\sqrt{z}}-\frac{4 \sqrt{y}}{\sqrt{z}+\sqrt{x}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}\)

Solution: \(\frac{3 \sqrt{x}}{\sqrt{y}+\sqrt{z}}-\frac{4 \sqrt{y}}{\sqrt{z}+\sqrt{x}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}\)

= \(\frac{3 \sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4 \sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)

= \(\frac{3 \sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{4 \sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)

= \(\frac{3 \sqrt{2}(\sqrt{6}-\sqrt{3})}{(\sqrt{6}+\sqrt{3})(\sqrt{6}+\sqrt{3})}-\frac{4 \sqrt{3}(\sqrt{6}-\sqrt{2})}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})}+\frac{\sqrt{6}(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}\)

= \(\frac{3 \sqrt{2}(\sqrt{6}-\sqrt{3})}{6-3}-\frac{4 \sqrt{3}(\sqrt{6}-\sqrt{2})}{6-2}+\frac{\sqrt{6}(\sqrt{3}-\sqrt{2})}{3-2}\)

= \(\frac{3 \sqrt{2}(\sqrt{6}-\sqrt{3})}{3}-\frac{4 \sqrt{3}(\sqrt{6}-\sqrt{2})}{4}+\frac{\sqrt{6}(\sqrt{3}-\sqrt{2})}{1}\)

= \(\sqrt{12}-\sqrt{6}-\sqrt{18}+\sqrt{6}+\sqrt{18}-\sqrt{12}\)

= 0

“WBBSE Class 10 Maths Exercise 9.3 Quadratic Surd problem solutions”

Question 4. If x = √7+√6 let us calculate the simplified values of

1. x – 1/x

Solution: x-1/x = (√7+√6)+(√7-√6)

= √7+√6 – √7 +√6

=2√6

x-1/x =2√6

2. x + 1/x

Solution: x – 1/x

= (√7+√6) + (√7-√6)

=√7+√6+√7-√6

=2√7

x – 1/x = 2√7

3. x²+1/x²

Solution: x²+1/x²

=(x+1/x)² – 2.x.1/x

=(2√7)² – 2.1

= 28-2

= 26

x²+1/x² = 26

4. x³ +1/x³

Solution: x³+1/x³

= (x+1/x)³ – 3.x.1/x(x+1/x)

=(2√7)³-3.1.2√7

=8 x 7√7 – 6√7

= 50√7

x³+1/x³ = 50√7

Question 5. x+√x2-1/x-√x2-1+ x-√x2-1/x+√x2-1 If the simplified value is 14, let us write by calculating what is the value of x.

Solution: \(\frac{x+\sqrt{x^2-1}}{x-\sqrt{x^2-1}}+\frac{x-\sqrt{x^2-1}}{x+\sqrt{x^2-1}}\)

\(\frac{\left(x+\sqrt{x^2-1}\right)^2+\left(x-\sqrt{x^2-1}\right)}{\left(x-\sqrt{x^2-1}\right)\left(x+\sqrt{x^2-1}\right)}\)

= \(\frac{x^2+x^2-1+2 x \sqrt{x^2-1}+x^2+x^2-1-2 x \sqrt{x^2-1}}{(x)^2-\left(\sqrt{x^2-1}\right)^2}\)

= \(\frac{4 x^2-2}{x^2-\left(x^2-1\right)}=\frac{4 x^2-2}{x^2-x^2+1}=4 x^2-2\)

According to the problem,

4x2 – 2 = 14

Or, 4x2 = 14 + 2 = 16

x2 = \(\frac{16}{4}\) = 4

\(x= \pm \sqrt{4}= \pm 2\)

 

Question 6. If a= √5+1 / √5-1 and b= √5-1/√5+1, let us following expressions

\(a+b=\frac{\sqrt{5}+1}{\sqrt{5}-1}+\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{(\sqrt{5}+1)^2+(\sqrt{5}-1)^2}{(\sqrt{5}-1)(\sqrt{5}+1)}\)

= \(\frac{5+1+2 \sqrt{5}+5+1-2 \sqrt{5}}{5-1}=\frac{12}{4}=3\)

& \(a-b=\frac{\sqrt{5}+1}{\sqrt{5}-1}-\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{(\sqrt{5}+1)^2-(\sqrt{5}-1)^2}{(\sqrt{5}-1)(\sqrt{5}+1)}\)

= \(\frac{(5+1+2 \sqrt{5})-(5+1-2 \sqrt{5})}{5-1}=\frac{5+1+2 \sqrt{5}-5-1+2 \sqrt{5}}{4}=\frac{4 \sqrt{5}}{4}=\sqrt{5}\)

ab = \(\frac{\sqrt{5}+1}{\sqrt{5}-1} \times \frac{\sqrt{5}-1}{\sqrt{5}+1}=1\)

“Class 10 WBBSE Maths Exercise 9.3 Quadratic Surd step-by-step solutions”

1. \(\frac{a^2+a b+b}{a^2-a b+b^2}\)

Solution: \(\frac{a^2+a b+b}{a^2-a b+b^2}\)

= \(\frac{a^2+b^2+a b}{a^2+b^2-a b}\)

= \(\frac{(a+b)^2-2 a b+a b}{(a+b)^2-2 a b-a b}\)

= \(\frac{(a+b)^2-a b}{(a+b)^2-3 a b}\)

= \(\frac{(3)^2-1}{(3)^2-3.1}\)

= \(\frac{9-1}{9-3}\)

= \(\frac{8}{6}\)

= \(\frac{4}{3}\)

 

2. (a-b)³/(a+b)³

Solution: (a-b)³/(a+b)³

= (√5)³/(3)

=5√5/27

(a-b)³/(a+b)³ =5√5/27

3. \(\frac{3 a^2+5 a b+3 b^2}{3 a^2-5 a b+3 b^2}\)

Solution: \(\frac{3 a^2+5 a b+3 b^2}{3 a^2-5 a b+3 b^2}\)

= \(\frac{3 a^2+6 a b+3 b^2-a b}{3 a^2-6 a b+3 b^2+a b}\)

= \(\frac{3\left(a^2+2 a b+b^2\right)-1}{3\left(a^2-2 a b+b^2\right)+1}\)

= \(\frac{3(a+b)^2-a b}{3(a-b)^2+a b}\)

= \(\frac{3(3)^2-1}{3(\sqrt{5})^2+1}\)

= \(\frac{27-1}{3.5+1}\)

= \(\frac{26}{16}\)

= \(\frac{13}{8}\)

= \(1 \frac{5}{8}\)

 

4. \(\frac{a^3+b^3}{a^3-b^3}\)

Solution: \(\frac{a^3+b^3}{a^3-b^3}\)

= \(\frac{(a+b)^3-3 a b(a+b)}{(a-b)^3+3 a b(a-b)}\)

= \(\frac{(3)^3-3.1 \cdot 3}{(\sqrt{5})^3+3 \cdot 1 \cdot \sqrt{5}}\)

= \(\frac{27-9}{8 \sqrt{5}}\)

= \(\frac{18 \sqrt{5}}{8 \sqrt{5} \cdot \sqrt{5}}\)

= \(\frac{18 \sqrt{5}}{8 \times 5}\)

= \(\frac{9 \sqrt{5}}{20}\)

“WBBSE Class 10 Chapter 9 Quadratic Surd Exercise 9.3 solution guide”

Question 7. If x = 2 + √3, y = 2-√3, let us calculate the simplified value of:

Solution : x = 2+√3

∴ 1/x = 1/2-√3

= 2-√3/(2+√3)(2-√3)

=2-√3/4-3

=2-√3/1

2-√3

Again, y=2-√3

∴ 1/y = 1/2- √3

=(2+√3)/(2+√3)(2-√3)

=2+√3/4-3

=2+√3/1

2+√3

1. x-1/x

Solution: x-1/x

=(2+√3) – (2-√3)

= 2+√3-2+√3

=2√3

x-1/x =2√3

2. y²+1/y²

Solution: y²+1/y²

=(y+1/y)²-2.y.1/y

={(2-√3)+(2+√3)}²

=(2-√3+2+√3)²-2

={(4)²-2)}

= 16-2

= 14

y²+1/y² = 14

3. x³-1/x³

Solution: x³-1/x³

= (x-1/x)³+3.x.1/x(x-1/x)

=(2√3)³+3.1.2√3

=8.3.√3+6√3

=24√3+√3

=30√3

x³-1/x³ =30√3

4. xy+1/xy

Solution: xy+1/xy

=x.y

=(2+√3)(2-√3)

=(2)²-(√3)²

= 4-3

= 1

∴ xy +1/xy

1+1/1

=1+1

=2

xy+1/xy =2

“West Bengal Board Class 10 Maths Exercise 9.3 Quadratic Surd solutions”

5. 3x²-5xy+3y²

Solution: 3x²-5xy+3y²

=3x²-6xy+3y²+xy

=3(x²-2xy+y²)+xy

=3(x-y)²+xy

=3{(2+√3)-(2-√3)}²+1

=3 x 4 x3 +1

=36+1

=37

3x²-5xy+3y² =37

Question 8. If x = √7+√3/√7-√3 and xy=1, let us show that x²+xy+y²/x²-xy+y² = 12/11

Solution:

\(\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}} \& x y=1, show that \frac{x^2+x y+y^2}{x^2-x y+y^2}\)

x = \(\frac{(\sqrt{7}+\sqrt{3})(\sqrt{7}+\sqrt{3})}{(\sqrt{7}-\sqrt{3})(\sqrt{7}+\sqrt{3})}=\frac{(\sqrt{7}+\sqrt{3})^2}{(\sqrt{7})^2(\sqrt{3})^2}=\frac{7+3+2 \cdot \sqrt{7} \cdot \sqrt{3}}{7-3}=\frac{10+2 \sqrt{21}}{4}\)

= \(\frac{2(5+\sqrt{21})}{4}=\frac{5+\sqrt{21}}{2}\)

As xy = 1

∴ \(y=\frac{1}{x}=\frac{2}{5+\sqrt{21}}=\frac{2(5-\sqrt{21})}{(5+\sqrt{21})(5-\sqrt{21})}\)

= \(\frac{2(5-\sqrt{21})}{(5)^2-(\sqrt{21})^2}=\frac{2(5-\sqrt{21})}{25-21}=\frac{2(5-\sqrt{21})}{4}=\frac{5-\sqrt{21}}{2}\)

x + y = \(\frac{5+\sqrt{21}}{2}+\frac{5-\sqrt{21}}{2}=\frac{5+\sqrt{21}+5-\sqrt{21}}{2}=\frac{10}{2}=5\)

Now, \(\frac{x^2+x y+y^2}{x^2-x y+y^2}=\frac{x^2+y^2+x y}{x^2+y^2-x y}=\frac{x^2+y^2+x y}{x^2+y^2-x y}\)

= \(\frac{(x+y)^2-x y}{(x+y)^2-3 x y}=\frac{(5)^2-1}{(5)^2-3.1}=\frac{25-1}{25-3}=\frac{24}{22}=\frac{12}{11}\)

 

Chapter 9 Quadratic surd Exercise 9.3 Multiple Choice Question

Question 1. If x=2+√3, the value of x + 1/x is

1. 2
2. 2√3
3. 4
4. 2-√3

Solution: 

x=2+√3

.. 1/x

=1/ 2+√3

=1x(2-√3)/(2+√3)(2-√3)

=2-√3/4-3

2-√3/1

2-√3

.. x+1/x = 2+v3+2-√3

=4

x+1/x =4

Answer. 3. 4

Question 2. If p + q = √13 and p-q= √5 then the value of pq is

1. 2
2. 18
3. 9
4. 8

Solution: We know,

pq = (p+q-p-q)/4 

=(√13)2-(√5)2/4

= 13-5/4

=8/4

=2

The value of pq is 2

Answer. 1. 2

“Class 10 WBBSE Maths Exercise 9.3 solutions for Quadratic Surd”

Question 3. If a + b = √5 and a-b=√3, the value of (a² + b²) is

1. 8
2. 4
3. 2
4. 1

Solution: a²+ b²= (a+b)²+(a-b)2/2

= (√5)²+(√3)2/2

= 5+3/2

=8/2

=3

The value of (a²+ b²) is 3

Answer. 1. 8

Question 5. If we subtract √5 from √125, the value is

1. √80
2. √120
3. √100
4. none of these

Solution: √125-√5 

= √5x5x5

= √5x5x5-√5-√5

=4√5

= √16×5

= 80

√125-√5  = 80

Answer. 1. √80

Question 6. The product of the bracketed terms (5 -√3), (√3 -1), (5+ √3), and (√3+1) is

1. 22
2. 44
3. 2
4. 11

Solution: (5-√3) (5+√3) (√3-1) (√3+1)

= {(5)2- (√3)2} {(√3)2- (1)}

=(23) x (3-1)

=22 x 2 

= 44

(5-√3) (5+√3) (√3-1) (√3+1) = 44

Answer. 2. 44

Chapter 9 Quadratic surd Exercise 9.3 True Or False

1. √75 and √147 are similar surds.

Solution: √75 & √5x5x3

=5√3 & √147

= √7x7x3 

=7√3

√75 & √5x5x3 =7√3

Answer. True

“WBBSE Class 10 Maths Quadratic Surd Exercise 9.3 answers”

2.√π is a quadratic surd. 

Answer. False

Chapter 9 Quadratic surd Exercise 9.3 Fill In The Blanks

1. 5√11 is an Irrational number (rational/irrational)

2. Conjugate surd of (√3-5) is   -√3-5.

3. If the product and sum of two quadratic surds is a rational number, then the surds are Irrational surd.

Chapter 9 Quadratic surd Exercise 9.3 Short Answers

Question 1. If x=3+2√2, let us write the value of x + 1/x

Solution: 1/x =1/3 +2√2

1x(3-2√2) / (3+2√2) (3-2√2)

=3-2√2/9-8

=3-2√2

=3+2√2+3-2√2=6

x + 1/x =6

Question 2. Let us write which one is greater between (√15+ √3) and (√10+ √8). 

Solution: Now, (√15+√3)2 =(√15)2+(√3)2+2.√15.√3

= 15+ 3 + 2√45

= 18+ 2√45

(√10 + √8)2 = (√10)2+(√8)2 +2. √10 √8 

= 10 +8 +2√80 

= 18+2√80

As 2√80 is greater than 2√45.

(√10+√8)2 > (√15+√3)2

(√10+√8) is greater than (√15+√3).

“WBBSE Class 10 Chapter 9 Quadratic Surd Exercise 9.3 problem-solving steps”

Question 3. Let us write two quadratic surds whose product is a rational number. 

Solution: (5+2√6) & (5-2√6).

Question 4. Let us write what should be subtracted from √72 to get √32.

Solution. Required number = √72-√32 = √6x6x2 – √4x4x2 

=6√2 -4√2 

= 2√2.

Question 5. Let us write the simplified value of (1/√2+1 + 1/√3+ √2 + 1/√4+ √3)

Solution: 1(√2-1)/(√2+1) (√2-1) + 1(√3-√2)/(√3 + √2) (√3-√2)+1(√4-√3)/(√4+ √3)(√4-√3)

=√2-1/2 -1 +  √3-√2/3-2 +  √4-√34-3

=√2-1+√3-√2+√4-√3

= √4-1

=2-1

= 1.

(1/√2+1 + 1/√3+ √2 + 1/√4+ √3) = 1

Leave a Comment