WBBSE Solutions For Class 8 Maths Chapter 13 Factorisation Of Algebraic Expressions

Factorization Of Algebraic Expressions

Today at school we have made rectangles and squares of different sizes using coloured cardboard.

Papia and Tathagaiha stuck those figures on a long thick chart paper and wrote the algebraic expressions for their area below the corresponding figures.

We all have planned to find out the length of each side of a rectangle or a square by fractions of each algebraic expression.

WBBSE Solutions For Class 8 Chapter 13 Factorisation Of Algebraic Expressions Coloured Cardboard

Question 1. On the school blackboard, I resolve \(49 x^2+70 x y+25 y^2\)

Solution:

\(49 x^2+70 x y+25 y^2=7 x^2+2 x 7 x \times 5 y+5 y^2\)

= \((7 x+5 y)^2\)

I got \(49 x^2+70 x y+25 y^2=(9 x+5 y) x(9 x+5 y)\)

The length of each side of the square = 7x + 5y unit.

“WBBSE Class 8 Maths Chapter 13 solutions, Factorisation of Algebraic Expressions”

Question 2. It is seen on the factorization of \(\left(81 a^2-72 a b+16 b^2\right)\)

The length of each side of the square = 9a – 4b

Read and Learn More WBBSE Solutions For Class 8 Maths

Question 3. Rehana factorized \(\left(64 m^2-121 n^2\right)\)

Solution:

She got, \(\left(64 m^2-121 n^2\right)\) = (8m + 11 n) x (8m – 11 n)

The length of the rectangle = 8m + 11n units and the length of the other side is units (8m – 11n).

Question 4. But Shiraz factorized [/latex]\left(125 a^3+8 b^3\right)[/latex]

Solution:

Given

\(125 a^3+8 b^3=5 a^3+2 b^3\)

= \((5 a+2 b)\left\{(5 a)^2-(5 a) \times(2 b)+4 b^2\right\}\)

[/latex]\left(125 a^3+8 b^3\right)[/latex] = (5a + 2b) (25a2 – 10ab + 4b2)[/latex][/latex]

Question 5. Utpal factorized \(\left(27 x^3-343 y^3\right)\)

Solution:

Given

\(27 x^3-343 y^3=3 x^3-7 y^3\)

\(\left(27 x^3-343 y^3\right)\) = \((3 x-7 y)\left(9 x^2+21 x y+49 y^2\right)\)

I factorize \(\left(x^2+7 x+12\right)\) but how shall I write down \(\left(x^2+7 x+12\right)\) as the product of two algebraic expressions?

Question 6. At first, let us write all known identities that help to factorize:

Solution:

\((a+b)^2=a^2+2 a b+b^2\) ………………………….. (1)

\((a-b)^2=a 2-2 a b+b^2\)  ……………………………(2)

\(a^2-b^2=(a+b) \times(a-b)\)  ………………………… (3)

\(a^3+b^3=(a+b) \times\left(a^2-a b+b^2\right)\)  ………………….(4)

\(a^3-b^3=(a-b) \times\left(a^2+a b+b^2\right)\) …………………(5)

\(x^2+(a+b) x+a b=(x+a)(x+b)\)  ………………….(6)

Question 7. I try to factorize the algebraic expression \(\left(x^2+7 x-18\right)\) with the help of identity no. 4

Solution:

\(x^2+7 x-18\)

There a + b = 7 and a × b = -18

-18 = 1 x(-18)=(-1 )x(18)=(-2)x9=2x(-9)=(-3)x6=3x(-6) and 7=9+(-2)

∴ Here a = 9 and b = -2

∴ I get from the identity no. 4

\(x^2+7 x-18=(x+9)\{x+(-2)\}\)

= (x+9)(x-2)

I get by factorizing

\(x^2+7 x-18=x^2+(9-2) x-18\)

= \(x^2+9 x-2 x-18\)

= x (x+9)-2 (x+9) = (x+9)(x-2)

WBBSE Solutions For Class 8 Maths Chapter 13 Factorisation Of Algebraic Expressions

Question 8. Let’s try to factorize \(\left(a^2-11 a+30\right) \text { and }\left(m^2-4 m-12\right) \cdot a^2-11 a+30\)

Solution:

30= 1×30=2×15=3×10=5×6

30=5×6, 11=5+6

1. \(m^2-4 m-12\)

Solution:

-12=(-1)×12= 1×(-12) = (-2)×6

= 2×(-6)= 3×(-4)= -3×4

-12 =(-2)×6, 4 =6+(-2)

2. \(a^2-11 a+30\)

Solution:

= \(a^2-(5+6) a+30\)

= \(a^2-5 a-6 a+30\)

= a (a-5)-6(a-5)

= (a-5)(a-6)

\(a^2-11 a+30\) = (a-5)(a-6)

3. \(m^2-4 m-12\)

Solution:

= \(m^2-(6-2) m-12\)

= \(m^2-6 m+2 m-12\)

= m(m-6) +2(m-6)

= (m-6)(m+2)

∴ We will find out two numbers a and b to resolve the binomial expression \(x^2+p x+q\)(the highest power of the variable in the algebraic expression is 2) into factors so that

a+b = p and a x b =q

∴ In that case the algebraic expression will be

\(x^2+(a+b) x+a b\)

=\(x^2+a x+b x+a b\)

= x (x+a) + b (x+a)

= (x+a) (x+b)

= (m-6)(m+2) = (x+a) (x+b)

“Class 8 WBBSE Maths Chapter 13 solutions, Factorisation study material”

Question 9. I try to resolve \(\left(x^2-x-20\right) \text { and }\left(b^2-10 b+16\right)\)

1. \(x^2-x-20\)

Solution:

-20 =5×(-4)

and 1= 5-4

2. \(b^2-10 b+16\)

Solution:

16= 8 × 2

and 10 = 8 + 2

3. \(x^2-x-20\)

Solution:

= \(x^2-(5-4) x-20\)

= \(x^2-5 x+4 x-20\)

= x(x-5)+4(x-5)

= (x-5)(x+4)

\(x^2-x-20\) = (x-5)(x+4)

4. \(b^2-10 b+16\)

Solution:

= \(b^2-(8+2) b+16\)

= \(b^2-8 b-2 b+16\)

= b(b-8)-2(b-8)

= (b-8)(b-2)

\(b^2-10 b+16\) = (b-8)(b-2)

“WBBSE Class 8 Maths Chapter 13, Factorisation of Algebraic Expressions solved examples”

Question 11. We factorize (x2+ 20xy – 96y2) and (1-5x-36×2). Each term of (x2+20xy-96y2) has variable. At first eliminate the variable from the last term.

Solution:

Given

\(x^2+20 x y-96 y^2\)

= \(\left\{\frac{x^2}{y^2}+\frac{20 x y}{y^2}-\frac{96 y^2}{y^2}\right\} x y^2\)

= \(\left\{\left(\frac{x}{y}\right)^2+20\left(\frac{x}{y}\right)-96\right\} x y^2\)

= \(\left(a^2+20 a-96\right) y\)       [Let \(\frac{x}{y}\) = a]   

= \(\left(a^2+24 a-4 a-96\right) y^2\)     [96=24×4 and 20=24-4]                                                           

= \(\{a(a+24)-4(a+24)\} y^2\)

= \((a+24)(a-4) y^2\)

= \(\left(\frac{x}{y}+24\right)\left(\frac{x}{y}-4\right) y^2\) [Puting a=\(\frac{x}{y}\)

= \(\left(\frac{x+24 y}{y}\right)\left(\frac{x-4 y}{y}\right) y^2\)

= \(\frac{(x+24 y)(x-4 y)}{y^2} y^2\)

= (x + 24y) (x-4y)

Alternative method

= \(x^2+20 x y-96 y^2\)

= \(x^2+(24 y-4 y) x-24 y \times 4 y\)

= \(x^2+24 x y-4 x y-24 y \times 4 y\)

= x (x + 24y) – 4y (x + 24y)

= x + 24y × x- 4y

Question 12. We try to factorize \(\left(1-5 x-36 x^2\right)\).

Solution:

Given

\(\left(1-5 x-36 x^2\right)\).

= \(1-5 x-36 x^2\)

= \(1-(9-4) \times(-9) \times 4 x^2\)

= \(1-9 x+4 x-9 \times 4 \times x^2\)

= 1 (1-9x) + 4x(1-9x)

= (1-9x)(1+4x)

\(\left(1-5 x-36 x^2\right)\) = (1-9x)(1+4x)

Question 13. I try to factorize (x-1) (x+3) (x-2)(x-6) +96.
Solution:

Given

(x-1) (x+3) (x-2)(x-6) +96.

But how will we factorize and with the help of which identity

x-1, x+3, x-2 and x-6? Let’s find the sum of the coefficients of two terms containing x only will be the product of two pair of expression among the four expressions

– 1-2 = – 3 and + 3 – 6= – 3

Then, the coefficient of x is the product (x-1)(x-2) is -3 and that of (x+3)(x-6) is (-3).

Then, (x-1)(x+3)(x-2)(x-6)+96

= (x-1 )(x+3)(x-2)(x-6) + 96

= \(\left(x^2-x-2 x+2\right)\left(x^2+3 x-6 x-18\right)+96\)

= \(\left(x^2-3 x+2\right)\left(x^2-3 x-18\right)+96\)

= (a+2) (a-18) + 96

= \(a^2-2 a-18 a-36+96\)

= \(a^2-16 a+60\)

= \(a^2-(10+6) a+60\)

= \(a^2-10 a-6 a+60\)

= a (a=10) -6 (a=10)

= (a-10) (a-6)

= \(\left(x^2-3 x-10\right)\left(x^2-3 x-6\right)\) [Let a=x2-3x]

= \(\left(x^2-5 x+2 x-10\right)\left(x^2-3 x-6\right)\)

= \(\{x(x-5)+2(x-5)\}\left(x^2-3 x-6\right)\)

= \((x-5)(x+2)\left(x^2-3 x-6\right)\)

(x-1) (x+3) (x-2)(x-6) +96 = \((x-5)(x+2)\left(x^2-3 x-6\right)\)

Question 14. Let’s factorize the algebraic expression \(x^2+3 x-(p+5)(p+2)\).

Solution:

Given

\(x^2+3 x-(p+5)(p+2)\) \(x^2+3 x-(p+5)(p+2)\)

= \(x^2+\{(p+5)-(p+2)\} x-(p+5)(p+2)\)

= \(x^2+(p+5) x-(p+2) x-(p+5)(p+2)\)

= x (x+p+5) – (p+2) (x+p+5)

= (x+p+5) (x-p-2)

\(x^2+3 x-(p+5)(p+2)\) = (x+p+5) (x-p-2)

Algebraic Expressions Exercise

Question 1. Comparing the following algebraic expressions with the identity \(x^2+(p+q) x+p q=(x+p)(x+q)\), let’s write the values of p and q and factorize them.

Algebraic expression:

Given

\(x^2+(p+q) x+p q=(x+p)(x+q)\)

= \(x^2-8 x+15\)

= \(x^2-40 x-129\)

= \(m^2+19 m+60\)

= \(x^2-x-6\)

= \((a+b)^2-4(a+b)-12\)

= \((x-y)^2-x+y-2\)

Values of p & q:

p= -5, q= -3

p=3, q=-43

p=15, q=4

p=-3, q=2

p=-6, q=2

p=-2, q=1

Resolve into factors: 

= (x-5) (x-3)

= (x+3) (x-43)

= (m+15) (m+4)

= (x-3) (x+2)

= (a+b-6) (a+b+2)

= (x-y-2) (x-y+1)

“WBBSE Class 8 Factorisation of Algebraic Expressions solutions, Maths Chapter 13”

Question 2. Let’s resolve into factors :

1. \((a+b)^2-5 a-5 b+6\)

= \((a+b)^2-5 a-5 b+6\)

= \((a+b)^2-5(a-b)+6\)

Let a + b = x

∴ \(x^2-5 x+6\)

= \(x^2-(3+2) x+6\)

= \(x^2-3 x-2 x+6\)

= x(x-3)-2 (x-3)

= (x-3) (x-2)

Putting the value of x (a+b-3) (a+b-2),

2. \(\left(x^2-2 x\right)^2+5\left(x^2-2 x\right)-36\)

Solution:

\(\left(x^2-2 x\right)^2+5\left(x^2-2 x\right)-36\)

Let \(x^2-2 x=a\)

∴ \(a^2+5 a-36\)

= \(a^2+(9-4) a-36\)

= \(a^2+9 a-4 a-36\)

= a (a+9) – 4 (a+9)

= (a+9) (a-4)

Putting the value of a, (x2 – 2x +9) (x2 – 2x – 4)[/latex][/latex]

3. (p2-3q2)2-16(p2-3q2) + 63[/latex][/latex]

Solution:

(p2-3q2)2-16(p2-3q2) + 63[/latex][/latex]

Let x p2 – 3q2 = x[/latex][/latex]

∴ x2-16x + 63[/latex][/latex]

= x2 – (9+7) x + 63[/latex][/latex]

= x2 – 9x – 7x + 63[/latex][/latex]

= x (x-9) -7 (x-9)

= (x-9) (x-7)

Putting the value of x, (p2 – 3q2-9)(p2-3q2-7)[/latex][/latex]

4. a4+4a2-5[/latex][/latex]

Solution:

a4+4a4-5[/latex][/latex]

= a4+ (5-1) a2-5[/latex][/latex]

= a4 + 5a2-a2-5[/latex][/latex]

= a2 (a2+5) – 1 (a2+5)[/latex][/latex]

= (a2+5) (a2-1) = (a2+5) (a+1) (a-1)[/latex][/latex]

a4+4a2-5[/latex][/latex] = (a2+5) (a2-1) = (a2+5) (a+1) (a-1)[/latex][/latex]

5. \(x^2 y^2+23 x y-420\)

Solution:

\(x^2 y^2+23 x y-420\)

= \(x^2 y^2+(35-12) x y-420\)

= \(x^2 y^2+35 x y-12 x y-420\)

= xy (xy + 35) -12 (xy + 35)

= (xy + 35) (xy -12)

\(x^2 y^2+23 x y-420\) = (xy + 35) (xy -12)

6. \(x^4-7 x^2+12\)

Solution:

= \(x^4-7 x^2+12\)

= \(x^4-(4+3) x^2+12\)

= \(x^4-4 x^2-3 x^2+12\)

= \(x^2\left(x^2-4\right)-3\left(x^2-4\right)\)

= \(\left(x^2-4\right)\left(x^2-3\right)\)

= \((x+2)(x-2)\left(x^2-3\right)\)

\(x^4-7 x^2+12\) = \((x+2)(x-2)\left(x^2-3\right)\)

7. \(a^2+a b-12 b^2\)

Solution:

\(a^2+a b-12 b^2\)

= \(a^2+(4-3) a b-12 b^2\)

= \(a^2+4 a b-3 a b-12 b^2\)

= a(a+4b) -3b (a+4b)

= (a+4b) (a-3b)

\(a^2+a b-12 b^2\) = (a+4b) (a-3b)

8. \(p^2+31 p q+108 q^2\)

Solution:

\(p^2+31 p q+108 q^2\)

= \(p^2+(27+4) p q+108 q^2\)

= \(p^2+27 p q+4 p q+108 q^2\)

= p (p+27q) + 4q (p+27q)

= (p+27q) (p+4q)

\(p^2+31 p q+108 q^2\) = (p+27q) (p+4q)

9. \(a^6+3 a^3 b^3-40 b^6\)

Solution:

\(a^6+3 a^3 b^3-40 b^6\)

= \(a^6+(8-5) a^3 b^3-40 b^6\)

= \(a^6+8 a^3 b^3-5 a^3 b^3-40 b^6\)

= \(a^3\left(a^3+8 b^3\right)-5 b^3\left(a^3+8 b^3\right)\)

= \(\left(a^3+8 b^3\right)\left(a^3-5 b^3\right)\)

= \(\left\{(a)^3+(2 b)^3\right\}\left(a^3-5 b^3\right)\)

= \((a+2 b)\left(a^2-2 a b+4 b^2\right)\left(a^3-5 b^3\right)\)

\(a^6+3 a^3 b^3-40 b^6\) = \((a+2 b)\left(a^2-2 a b+4 b^2\right)\left(a^3-5 b^3\right)\)

10. (x+1) (x+3) (x-4) (x-6) + 24 .

Solution:

(x+1) (x+3) (x-4) (x-6) + 24

= (x+1) (x-4) (x+3) (x-6) + 24

= \(\left(x^2-3 x-4\right)\left(x^2-3 x-18\right)+24\)

Let \(x^2-3 x=a\)

∴ (a-4) (a-18) + 24

= \(a^2-22 a+72+24\)

= \(a^2-22 a+96\)

= \(a^2-(16+6) a+96\)

= \(a^2-16 a-6 a+96\)

= a (a-16) -6 (a-16)

= (a-16) (a-6)

(x+1) (x+3) (x-4) (x-6) + 24 = (a-16) (a-6)

Putting the value of a, \(\left(x^2-3 x-16\right)\left(x^2-3 x-6\right)\)

“Class 8 WBBSE Maths Chapter 13, Factorisation easy explanation”

11. \((x+1)(x+9)(x+5)^2+63\)

Solution:

\((x+1)(x+9)(x+5)^2+63\)

= \(\left(x^2+10 x+9\right)\left(x^2+10 x+25\right)+36\)

Let \(x^2+10 x=a\)

∴  (a+9) (a+25) + 63

= \(a^2+34 a+225+63\)

= \(a^2+34 a+288\)

= \(a^2+(18+16) a+288\)

= \(a^2+18 a+16 a+288\)

= a (a+18 + 16(a+18)

= (a+18) (a+16)

Putting the value of a, \(\left(x^2+10 x+18\right)\left(x^2+10 x+16\right)\)

= \(\left(x^2+10 x+18\right)\left\{\left(x^2+(8+2) x+16\right\}\right.\)

= \(\left(x^2+10 x+18\right)(x 2+8 x+2 x+16)\)

= \(\left(x^2+10 x+18\right)\{x(x+8)+2(x+8)\}\)

= \(\left(x^2+10 x+18\right)(x+8)(x+2)\)

= \((x+2)(x+8)\left(x^2+10 x+18\right)\)

12. x(x+3) (x+6) (x+9) + 56

Solution:

= x(x+3) (x+6) (x+9) + 56

= x(x+9) (x+3) (x+6) + 56

= \(\left(x^2+9 x\right)\left(x^2+9 x+18\right)+56\)

∴ Let \(x^2+9 x=a\)

= a (a+18) + 56

= \(a^2+18 a+56\)

= \(a^2+(14+4) a+56\)

= \(a^2+14 a+4 a+56\)

= a(a+14) +4 (a+14)

= (a+14) (a+4)

Putting the value of a,

\(\left(x^2+9 x+14\right)\left(x^2+9 x+4\right)\)

= \(\left(x^2+7 x+2 x+14\right)\left(x^2+9 x+4\right)\)

= \(\{x(x+7)+2(x+7)\}\left(x^2+9 x+4\right)\)

= \((x+7)(x+2)\left(x^2+9 x+4\right)\)

13. \(x^2-2 a x+(a+b)(a-b)\)

Solution:

\(x^2-2 a x+(a+b)(a-b)\)

= \(x^2-2 a x+a^2-b^2\)

= \((x-a)^2-(b)^2\)

= (x-a+b) (x-a-b)

\(x^2-2 a x+(a+b)(a-b)\) = (x-a+b) (x-a-b)

14. \(x^2-b x-(a+3 b)(a+2 b)\)

Solution:

\(x^2-\{(a+3 b)-(a+2 b)\} x-(a+3 b)(a+2 b)\)

= \(x^2-(a+3 b) x+(a+2 b) x-(a+3 b)(a+2 b)\)

= x(x-a-3b) + (a + 2b) (x-a-3b)

= (x-a-3b) (x+a+2b)

\(x^2-b x-(a+3 b)(a+2 b)\) = (x-a-3b) (x+a+2b)

15. \((a+b)^2-5 a-5 b+6\)

Solution:

\((a+b)^2-5 a-5 b+6\)

= \((a+b)^2-5(a+b)+6\)

Let a + b = x

∴ \(x^2-5 x+6\)

= \(x^2-(3+2) x+6\)

= \(x^2-3 x-2 x+6\)

= x (x-3) – 2 (x-3)

= (x-3) (x-2)

Putting the value of x, (a+b-3) (a+b-2)

\((a+b)^2-5 a-5 b+6\) = (a+b-3) (a+b-2)

16. \(x^2+4 a b x-\left(a^2-b^2\right)^2\)

Solution:

\(x^2+4 a b x-\left(a^2-b^2\right)^2\)

= \(x^2+4 a b x-\{(a+b)(a-b)\}^2\)

= \(x^2+4 a b x-(a+b) 2(a-b)^2\)

= \(x^2+\left\{(a+b)^2-(a-b)^2\right\} x-(a+b)^2(a-b)^2\)

= \(x^2+(a+b)^2 x-(a-b) 2 x-(a+b)^2(a-b)^2\)

= \(x\left\{x+(a+b)^2\right\}-(a-b)^2\left\{x+(a+b)^2\right\}\)

= \(\left\{x+(a+b)^2\right\}\left\{x-(a-b)^2\right\}\)

= \(\left(x+a^2+2 a b+b^2\right)\left(x-a^2+2 a b-b^2\right)\)

\(x^2+4 a b x-\left(a^2-b^2\right)^2\) = \(\left(x+a^2+2 a b+b^2\right)\left(x-a^2+2 a b-b^2\right)\)

17. x2 – \(\left(a+\frac{1}{a}\right)\)x + 1

Solution:

= \(x^2-a x-\frac{x}{a}+\frac{a}{a}\)

= \(x(x-a)-\frac{1}{a}(x-a)=(x-a)\left(x-\frac{1}{a}\right)\)

x2 – \(\left(a+\frac{1}{a}\right)\)x + 1 = \(x(x-a)-\frac{1}{a}(x-a)=(x-a)\left(x-\frac{1}{a}\right)\)

18. \(x^6 y^6-9 x^3 y^3+8\)

Solution:

\(x^6 y^6-9 x^3 y^3+8\)

= \(x^6 y^6-(8+1) x^3 y^3+8\)

= \(x^6 y^6-8 x^3 y^3-x^3 y^3+8\)

= \(x^3 y^3\left(x^3 y^3-8\right)-1\left(x^3 y^3-8\right)\)

= \(\left(x^3 y^3-8\right)\left(x^3 y^3-1\right)\)

“WBBSE Class 8 Maths Chapter 13 solutions, Factorisation of Algebraic Expressions PDF”

= \(\left\{(x y)^3-(2)^3\left\{(x y)^3-(1)^3\right\}\right.\)

= \((x y-2)\left(x^2 y^2+2 x y+4\right)(x y-1)\left(x^2 y^2+x y+1\right)\)

\(x^6 y^6-9 x^3 y^3+8\) = \((x y-2)\left(x^2 y^2+2 x y+4\right)(x y-1)\left(x^2 y^2+x y+1\right)\)

Question 19. \(3 x^2+14 x+18\)

Solution:

= \(\frac{9 x^2+42 x+24}{3}\)

= \(\frac{(3 x)^2+14 \times 3 x+24}{3}\)

= \(\frac{y^2+14 y+24}{3}\) [Let 3x=y]

= \(\frac{y^2+12 y+2 y+24}{3}\)

= \( \frac{y(y+12)+2(y+12)}{3}\)

= \(\frac{(y+12)(y+2)}{3}\)

= \(\frac{(y+12)(y+2)}{3}\)

= \(\frac{(3 x+12)(3 x+2)}{3}\)            [Putting y=3x,we get]

= \(\frac{3(x+4)(3 x+2)}{3}\)

= (x+4)(3x+2)

Alternatively we write,

\(3 x^2+14 x+8\)

We find two numbers a and b such that a+b = 14 and a × b = 3 × 8 = 24

= 12×2 and 14= 12+2

= \(3 x^2+14 x+8\)

= \(3 x^2+(12+2) x+8\)

= \(3 x^2+12 x+2 x+8\)

= 3x (x+4) +2 (x+4)

= (x+4) (3x+2)

\(3 x^2+14 x+18\) = (x+4) (3x+2)

Question 20. Lets resolve \(6 x^2-x-15\) into factors and let’s write what are the possible lengths of the side (in units) of the yellow rectangular board.
Solution:

\(6 x^2-x-15\)

∴ -90 =10×(-9) and -1 = 10+(-9)

= \(6 x^2-x-15\)

= \(6 x^2-(10-9) x-15\)

= \(6 x^2-10 x+9 x-15\)

= 2x (3x-5)+3(3x-5)

= (3x-5) (2x + 3)

Question 21. Let’s express 2 algebraic expressions \(x^2+13 x-48 \text { and } 6 y^2-y-15\) as the difference between two squares. Now let’s try to resolve into factors with the help of the identity \(a^2-b^2=(a+b)(a+b)\).

Solution:

= \(x^2+13 x-48\)

= \( x^2+2 \cdot x \cdot \frac{13}{2}+\left(\frac{13}{2}\right)^2-\left(\frac{13}{2}\right)^2-48\)

= \(\left(x+\frac{13}{2}\right)^2-\frac{169}{4}-48\)

= \(\left(x+\frac{13}{2}\right)^2-\left(\frac{169}{4}+48\right)\)

= \( \left(x+\frac{13}{2}\right)^2-\frac{169+192}{4}\)

= \(\left(x+\frac{13}{2}\right)^2-\frac{361}{4}\)

= \(\left(x+\frac{13}{2}\right)^2-\left(\frac{19}{4}\right)^2\)

= \(\left(x+\frac{13}{2}+\frac{19}{2}\right)\left(x+\frac{13}{2}-\frac{19}{2}\right)\)

= \(\left(x+\frac{13+19}{2}\right)\left(x+\frac{13-19}{2}\right)\)

= (x+16) (x-3)

Factorize \(\left(x^2+13 x-48\right)\) by middle-term factor method.

\(x^2+13 x-48\)

= \(x^2+16 x-3 x-48\)

= x (x+16) -3 (x+16)

= (x+16) (x-3)

“WBBSE Class 8 Maths Chapter 13, Factorisation important questions”

Algebraic Expressions Exercise 13.2

Question 1. Let’s resolve into factors \(\left(a^2-a-72\right) \text { and }\left(2 x^2-x-1\right)\) by expressing the algebraic expressions as the difference of two squares.
Solution:

Given

\(\left(a^2-a-72\right) \text { and }\left(2 x^2-x-1\right)\) 

\(a^2-a-72\)

= \(a^2-(9-8) a-72\)

= \(a^2-9 a+8 a-72\)

= a (a-9) +8 (a-9)

= (a-9) (a+8)

\(2 x^2-x-1\)

= \(2 x^2-(2-1) x-1\)

= \(2 x^2-2 x+x-1\)

= 2x (x-1) +1 (x-1)

= (x-1) (2x+1)

Question 2.  Let’s resolve into factors —

1. \(2 a^2+5 a+2\)

Solution:

\(2 a^2+5 a+2\)

= \(2 a^2+(4+1) a+2\)

= \(2 a^2+4 a+a+2\)

= 2a (a+2) +1 (a+2)

= (a+2) (2a+1).

\(2 a^2+5 a+2\) = (a+2) (2a+1).

2. \(3 x^2+14 x+8\)

Solution:

\(3 x^2+14 x+8\)

= \(3 x^2+(12+2) x+8\)

= \(3 x^2+12 x+2 x+8\)

= 3x (x+4) +2 (x+4)

= (x+4) (3x+2)

\(3 x^2+14 x+8\) = (x+4) (3x+2)

3. \(2 m^2+7 m+6\)

Solution:

\(2 m^2+7 m+6\)

= \(2 m^2+(4+3) m+6\)

= \(2 m^2+4 m+3 m+6\)

= 2m (m+2) +3 (m+2)

= (m+2) (2m+3)

\(2 m^2+7 m+6\) = (m+2) (2m+3)

4. \(6 x^2-x-15\)

Solution:

\(6 x^2-x-15\)

= \(6 x^2-(10-9) x-15\)

= \(6 x^2-10 x+9 x-15\)

= 2x (3x – 5) +3 (3x – 5)

= (3x – 5) (2x + 3)

\(6 x^2-x-15\) = (3x – 5) (2x + 3)

5. \(9 r^2+r-8\)

Solution:

\(9 r^2+r-8\)

= \(9 r^2+(9-8) r-8\)

= \(9 r^2+9 r-8 r-8\)

= 9r (r+1) -8 (r+1)

= (r+1) (9r-8)

\(9 r^2+r-8\) = (r+1) (9r-8)

6. \(6 m^2-11 m n-10 n^2\)

Solution:

\(6 m^2-11 m n-10 n^2\)

= \(6 m^2-(15-4) m n-10 n^2\)

= \(6 m^2-15 m n+4 m n-10 n^2\)

= 3m (2m-5n) +2n (2m-5n)

= (2m-5n) (3m+2n)

\(6 m^2-11 m n-10 n^2\) = (2m-5n) (3m+2n)

7. \(7 x^2+48 x y-7 y^2\)

Solution:

\(7 x^2+48 x y-7 y^2\)

= \(7 x^2+(49-1) x y-7 y^2\)

= \(7 x^2+49 x y-x y-7 y^2\)

= 7x (x+7y)-y(x+7y)

= (x+7-y) (7x-y)

\(7 x^2+48 x y-7 y^2\) = (x+7-y) (7x-y)

8. \(12+x-6 x^2\)

Solution:

\(12+x-6 x^2\)

= \(12+(9-8) x-6 x^2\)

= \(12+9 x-8 x-6 x^2\)

= 3 (4+3x) – 2x (4+3x)

= (4+3x) (3-2x)

\(12+x-6 x^2\) = (4+3x) (3-2x)

9. \(6+5 a-6 a^2\)

Solution:

\(6+5 a-6 a^2\)

= \(6+(9-4) a-6 a^2\)

= \(6+9 a-4 a-6 a^2\)

= 3 (2+3a)-2a (2+3a)

= (2+3a) (3-2a)

\(6+5 a-6 a^2\) = (2+3a) (3-2a)

10. \(6 x^2-13 x+6\)

Solution:

\(6 x^2-13 x+6\)

= \(6 x^2-(9+4) x+6\)

= 3x (2x-3) -2 (2x-3)

= (2x-3) (3x-2)

\(6 x^2-13 x+6\) = (2x-3) (3x-2)

11. \(99 a^2-202 a b+99 b^2\)

Solution:

\(99 a^2-202 a b+99 b^2\)

= \(99 a^2-(121+81) a b+99 b^2\)

= \(99 a^2-121 a b-81 a b+99 b^2\)

= 11 a (9a-11 b)-9b(9a-11 b)

= (9a-11b) (11a-9b)

\(99 a^2-202 a b+99 b^2\) = (9a-11b) (11a-9b)

“Class 8 Maths Factorisation solutions, WBBSE syllabus”

12. \(2 a^6-13 a^3-24\)

Solution:

\(2 a^6-13 a^3-24\)

= \(2 a^6-(16-3) a^3-24\)

= \(2 a^6-16 a 3+3 a^3-24\)

= \(2 a 3\left(a^3-8\right)+3\left(a^3-8\right)\)

= \(\left(a^3-8\right)\left(2 a^3+3\right)\)

= \(\left\{(a)^3-(2) 3\right\}\left(2 a^3+3\right)\)

= \((a-2)\left(a^2+2 a+4\right)\left(2 a^3+3\right)\)

\(2 a^6-13 a^3-24\)= \((a-2)\left(a^2+2 a+4\right)\left(2 a^3+3\right)\)

13. \(8 a^4+2 a^2-45\)

Solution:

\(8 a^4+2 a^2-45\)

= \(8 a^4+(20-18) a^2-45\)

= \(8 a^4+20 a^2-18 a^2-45\)

= \(4 a^2\left(2 a^2+5\right)-9\left(2 a^2+5\right)\)

= \(\left(2 a^2+5\right)(4 a 2-9)\)

= \(\left(2 \mathrm{a}^2+5\right)\left\{(2 \mathrm{a})^2-(3)^2\right\}\)

= \(\left(2 a^2+5\right)(2 a+3)(2 a-3)\)

\(8 a^4+2 a^2-45\) = \(\left(2 a^2+5\right)(2 a+3)(2 a-3)\)

14. \(6(x-y)^2-x+y-15\)

Solution:

[/latex]6(x-y)^2-x+y-15[/latex]

= \(6(x-y)^2-(x-y)-15\)

Let x-y=a

∴ \(6 a^2-a-15\)

= \(6 a^2-(10-9) a-15\)

= \(6 a^2-10 a+9 a-15\)

= 2a (3a – 5) + 3 (3a – 5)

= (3a – 5) (2a + 3)

Putting the value of a, (3x-3y-5) (2x-2y+3)

\(6(x-y)^2-x+y-15\) = (3x-3y-5) (2x-2y+3)

15. \(3(a+b)^2-2 a-2 b-8\)

Solution.

\(3(a+b)^2-2 a-2 b-8\)

= \(3(a+b)^2-2(a+b)-8\)

Let a + b = x

∴ \(3 x^2-2 x-8\)

= \(3 x^2-(6-4) x-8\)

= \(3 x^2-6 x+4 x-8\)

= 3x (x-2) +4 (x-2)

= (x-2) (3x+4)

Putting the value of x, (a+b-2) (3a+3b+4)

\(3(a+b)^2-2 a-2 b-8\) = (a+b-2) (3a+3b+4)

16. \(6(a+b)^2+5\left(a^2-b^2\right)-6(a-b)^2\)

Solution:

\(6(a+b)^2+5\left(a^2-b^2\right)-6(a-b)^2\)

= \(6(a+b)^2+5(a+b)(a-b)-6(a-b)^2\)

Let a+b=x and a-b=y

∴ \(6 x^2+5 x y-6 y^2\)

= \(6 x^2+(9-4) x y-6 y^2\)

= \(6 x^2+9 x y-4 x y-6 y^2\)

= 3x (2x+3y) -2y (2x+3y)

= (2x+3y) (3x-2y)

Putting the values x and y, (2a+2b+3a-3b) (3a+3b-2a+2b) = (5a-b) (a+5b)

\(6(a+b)^2+5\left(a^2-b^2\right)-6(a-b)^2\)= (5a-b) (a+5b)

Question 3. Let’s resolve the following algebraic expressions into factors by expressing them as the difference of two squares.

1. \(x^2-2 x-3\)

Solution:

\(x^2-2 x-3\)

= \(x^2-2 x+1-4\)

= \((x)^2-2 \times 1+(1) 2-(2)^2\)

= \((x-1)^2-(2)^2\)

= (x-1+2) (x-1-2)

= (x+1) (X-3)

\(x^2-2 x-3\) = (x+1) (X-3)

2. \(x^2+5 x+6\)

Solution:

\(x^2+5 x+6\)

= \((x)^2+2 \cdot x \cdot \frac{5}{2}+\left(\frac{5}{2}\right)^2+6-\left(\frac{5}{2}\right)^2 \)

= \(\left(x+\frac{5}{2}\right)^2+6-\frac{25}{4}\)

= \(\left(x+\frac{5}{2}\right)^2+\frac{24-25}{4}\)

= \(\left(x+\frac{5}{2}\right)^2-\frac{1}{4}\)

= \(\left(x+\frac{5}{2}\right)^2-\left(\frac{1}{2}\right)^2\)

= \( \left(x+\frac{5}{2}+\frac{1}{2}\right)\left(x+\frac{5}{2}-\frac{1}{2}\right)\)

= (x+3) (x+2)

\(x^2+5 x+6\) = (x+3) (x+2)

“WBBSE Class 8 Chapter 13 Maths, Factorisation of Algebraic Expressions step-by-step solutions”

3. \(3 x^2-7 x-6\)

Solution:

\(3 x^2-7 x-6\)

= \(3\left(x^2-\frac{7}{3} x-2\right)\)

= \( \left\{(x)^2-2 \cdot x \cdot \frac{7}{6}+\left(\frac{7}{6}\right)^2-\left(\frac{7}{6}\right)^2-2\right\}\)

= \(3\left\{\left(x-\frac{7}{6}\right)^2-\left(\frac{49}{36}+\frac{2}{1}\right)\right\}\)

\(=3\left\{\left(x-\frac{7}{6}\right)^2-\frac{121}{36}\right\}\) \(=3\left\{\left(x-\frac{7}{6}\right)^2-\left(\frac{11}{6}\right)^2\right\}
\)

= \(3\left(x-\frac{7}{6}+\frac{11}{6}\right)\left(x-\frac{7}{6}-\frac{11}{6}\right) \)

= \(3\left(x+\frac{4}{6}\right)(x-3)\)

= (3x+2) (x-3)

\(3 x^2-7 x-6\) = (3x+2) (x-3)

4. \(3 a^2-2 a-5\)

Solution:

= \(3\left(a^2-\frac{2}{3} a-\frac{5}{3}\right)\)

= \(3\left\{(a)^2-2 \cdot a \cdot \frac{1}{3}+\left(\frac{1}{3}\right)^2-\left(\frac{1}{3}\right)^2-\frac{5}{3}\right\}\)

= \(3\left\{\left(a-\frac{1}{3}\right)^2-\frac{1}{9}-\frac{5}{3}\right\}\)

= \(3\left\{\left(a-\frac{1}{3}\right)^2-\left(\frac{1+15}{9}\right)\right\}\)

= \(3\left\{\left(a-\frac{1}{3}\right)^2-\frac{16}{9}\right\}\)

= \(3\left\{\left(a-\frac{1}{3}\right)^2-\left(\frac{4}{3}\right)^2\right\}\)

= \(3\left(a-\frac{1}{3}+\frac{4}{3}\right)\left(a-\frac{1}{3}-\frac{4}{3}\right)\)

= \(3(a+1)\left(a-\frac{5}{3}\right)\)

= (a+1) (3a-5)

\(3 a^2-2 a-5\) = (a+1) (3a-5)

Question 4. Let’s resolve into factors

1. \(a x^2+\left(a^2+1\right) x+a\)

Solution:

\(a x^2+\left(a^2+1\right) x+a\)

= \(a x^2+a^2 x+x+a\)

= ax (x + a) + 1 (x + a)

= (x + a) (ax + 1)

\(a x^2+\left(a^2+1\right) x+a\) = (x + a) (ax + 1)

2. \(x^2+2 a x+(a+b)(a-b)\)

Solution:

\(x^2+2 a x+(a+b)(a-b)\)

= \(x^2+2 a x+a^2-b^2\)

= \((x+a)^2-(b)^2\)

= (x + a + b) (x + a – b)

\(x^2+2 a x+(a+b)(a-b)\) = (x + a + b) (x + a – b)

3. \(a x^2-\left(a^2+1\right) x+a\)

\(a x^2-\left(a^2+1\right) x+a\)

= \(a x^2-a^2 x-x+a\)

= ax (x – a) -1 (x – a)

= (x – a) (ax – 1)

\(a x^2-\left(a^2+1\right) x+a\) = (x – a) (ax – 1)

4. \(a x^2+\left(a^2-1\right) x-a\)

Solution:

\(a x^2+\left(a^2-1\right) x-a\)

= \(a x^2+a^2 x-x-a\)

= ax (x + a) – 1 (x + a)

= (x + a) (ax – 1)

\(a x^2+\left(a^2-1\right) x-a\) = (x + a) (ax – 1)

5. \(a x^2-\left(a^2-2\right) x-2 a\)

Solution:

\(a x^2-\left(a^2-2\right) x-2 a\)

= \(a x^2-a^2 x+2 x-2 a\)

= ax (x – a) + 2 (x – a)

= (x – a) (ax + 2)

\(a x^2-\left(a^2-2\right) x-2 a\) = (x – a) (ax + 2)

“WBBSE Maths Class 8 Factorisation of Algebraic Expressions, Chapter 13 key concepts”

6. \(a^2+1-\frac{6}{a^2}\)

Solution:

= \(a^2+1-\frac{6}{a^2}\)

= \(a^2+3-2-\frac{6}{a^2}\)

= \(a\left(a+\frac{3}{a}\right)-\frac{2}{a}\left(a+\frac{3}{a}\right)\)

= \(\left(a+\frac{3}{a}\right)\left(a-\frac{2}{a}\right)\)

\(a^2+1-\frac{6}{a^2}\) = \(\left(a+\frac{3}{a}\right)\left(a-\frac{2}{a}\right)\)

Leave a Comment