WBBSE Solutions For Class 9 Maths Chapter 5 Linear Simultaneous Equations Exercise 5.5

Class IX Maths Solutions WBBSE Chapter 5 Linear Simultaneous Equations Exercise 5.5

Question 1. Let us express the value of the variable x from the equation \(\frac{2}{x}+\frac{3}{y}=1\) in terms of the variable y.

Solution: \(\frac{2}{x}+\frac{3}{y}=1\)

\(\frac{2}{x}=1-\frac{3}{y}\) \(\frac{2}{x}=\frac{y-3}{y}\)

Read and Learn More WBBSE Solutions For Class 9 Maths

or, (y-3)x = 2y

or, \(x=\frac{2 y}{y-3}\)

Question 2. Let us write the value of x by putting \(\frac{7-4 x}{-5}\) -4x -5 instead of y in the equation 2x + 3y = 9.

Solution: 2x+3y=9

\(or, \quad 2 x+\frac{3(7-4 x)}{-5}=9
or, \quad 2 x-\frac{3(7-4 x)}{5}=9
or, \quad \frac{10 x-21+12 x}{5}=9
or, \quad 22 x-21=45\)

Class IX Maths Solutions WBBSE

or, 22x = 45 +21
or,22x=66

or, \(x=\frac{66}{22}\)

∴ x = 3.

Question 3. Let us solve the following equations in two variables by substitution method and check them graphically.

1. 3x – y = 7, 2x + 4y = 0

Solutioin:

Given

3x – y = 7 …(1)

2x + 4y = 0…(2)

From equation (1)-y=-3x+7
or, y = 3x-7 …..(3)

Putting the value of y in equation (2),
2x + 4(3x-7)= 0

or, 2x+12x-28=0
or, 14x= 28

or, \(x=\frac{28}{14}\)

x = 2

Putting the value of y in equation (4),
y=3×2-7

or, y = 6-7
or,y = -1

∴ x = 2
y=-1

From equation (3)
y = 3x-7

x 2 4 -1
y -1 5 -10

 

From equation (2) 4y = -2x

or, \(y=\frac{-x}{2}\)

x 2 6 -2
y -1 -3 1

 

2. \(\frac{x}{2}+\frac{y}{3}=2=\frac{x}{4}+\frac{y}{2}\)

Solution:

\(\frac{x}{2}+\frac{y}{3}=2\) …(1)

\(\frac{x}{4}+\frac{y}{2}= \) …(2)

Class IX Maths Solutions WBBSE

From equation (1) \(\frac{x}{2}=2-\frac{y}{3}\)

or, \(\frac{x}{2}=\frac{6-y}{3}\)

or, \(x=\frac{12-2 y}{3}\) …(3)

Putting the value of y in equation (4),

\(\frac{\frac{12-2 y}{3}}{4}+\frac{y}{2}=2\)

 

or, \(\frac{2(6-y)}{3} \times \frac{1}{4}+\frac{y}{2}=2\)

or, \(\frac{6-y}{6}+\frac{y}{2}=2\)

or, \(\frac{6-y+3 y}{6}=2\)

or, 6+ 2y = 12
or, 2y=12-6

or, y = 6/2

∴ y = 3

Putting the value of y in equation (4),

\(x=\frac{12-2 \times 3}{3}\)

 

or, \(x=\frac{12-6}{3}\)

or, \(x=\frac{6}{3}\)

∴ x = 2, y=2

⇒ y = 3

From equation (3)

\(x=\frac{12-2 y}{3}\)

 

x 4 2 -6
y 0 3 -3

 

From equation (2)

\(\frac{x}{4}=2-\frac{y}{2}\)

 

or, x = 8- 2y

x 4 0 12 2
y 2 4 -2 3

 

Class IX Maths Solutions WBBSE

Question 4. Let us solve the following equations in two variables by substitution method and check whether the solutions satisfy the equations:

1. \(2 x+\frac{3}{y}=1,5 x-\frac{2}{y}=\frac{11}{12}\) 

Solution:

Given

\(2 x+\frac{3}{y}=1\) …(1)

\(5 x-\frac{2}{y}=\frac{11}{12}\) …..(2)

From equation (1) \(\frac{3}{y}=1-2 x\)

or, (1-2x)y = 3

or, \(y=\frac{3}{1-2 x}\)

Putting the value of y in equation (2),

\(5 x-\frac{2(1-2 x)}{3}=\frac{11}{12}\)

 

or, \(\frac{15 x-2+4 x}{3}=\frac{11}{12}\)

or, \(\quad 19 x-2=\frac{11}{4}\)

or, \(19 x=\frac{11}{4}+2\)

or, \(19 x=\frac{11+8}{4}\)

or, \(x=\frac{19}{19 \times 4}\)

or, \(x=\frac{1}{4}\)

Putting the value of x in equation (3)

\(y=\frac{3}{1-2 \times \frac{1}{4}}\)

 

or, \(y=\frac{3}{1-\frac{1}{2}}\)

or, y = 6

⇒ \(x=\frac{1}{4}\)

y = 6

From equation (1) L. H.S. = \(2 x+\frac{3}{y}\)

\(\begin{aligned}
& =2 \times \frac{1}{4}+\frac{3}{6} \\
& =\frac{1}{2}+\frac{1}{2} \\
& =\frac{1+1}{2} \\
& =\frac{2}{2}
\end{aligned}\)

Class IX Maths Solutions WBBSE

= 1
= R. H. S.

Again from equation (2) L. H. S. = \(5 x-\frac{2}{y}\)

\(\begin{aligned}
& =5 \times \frac{1}{4}-\frac{2}{6} \\
& =\frac{5}{4}-\frac{1}{3} \\
& =\frac{15-4}{12}
\end{aligned}\)

 

= \(\frac{11}{12}\)
= R. H. S.

∴ \(x=\frac{1}{4}\) & y = 6 satify the equations (1) & (2).

 

2. \(\frac{2}{x}+\frac{3}{y}=2, \frac{5}{x}+\frac{10}{y}=5 \frac{5}{6}\)

Solution:

Given

\(\frac{2}{x}+\frac{3}{y}=2\) …(1)

 

\(\frac{5}{x}+\frac{10}{y}=5 \frac{5}{6}\)….(2)

From equation (1) \(\frac{3}{y}=2-\frac{2}{x}\)

or, \(\frac{3}{y}=\frac{2 x-2}{x}\)

or,(2x-2)y = 3 x

or, \(y=\frac{3 x}{2 x-2}\) ….(3)

Putting the value of x in equation (2),

\(\frac{5}{x}+\frac{10(2 x-2)}{3 x}=\frac{35}{6}\)

Class 9 Mathematics West Bengal Board

or, \(\frac{15+20 x-20}{3 x}=\frac{35}{6}\)

or, \(\frac{20 x-5}{x}=\frac{35}{2}\)

or, 40x-10=35x
or, 40x-35x=10
or, 5x = 10

or, \(x=\frac{10}{5}\)

or, x  = 2

Putting the value of x in equation (3),

or, \(y=\frac{3 \times 2}{2 \times 2-2}\)

or, \(y=\frac{6}{4-2}\)

or, \(y=\frac{6}{2}\)

∴ y = 3, x = 2

From equation (1) L. H.S. = \(\frac{2}{x}+\frac{3}{y}\)

= \(\frac{2}{2}+\frac{3}{3}\)

= 1 + 1 = 2
= R. H. S.

Again, from equation (2) L. H. S. \(\frac{5}{x}+\frac{10}{y}\)

\(\begin{aligned}
& =\frac{5}{2}+\frac{10}{3} \\
& =\frac{15+20}{6} \\
& =\frac{35}{6} \\
& =5 \frac{5}{6}
\end{aligned}\)

= R. H. S.

3. \(\frac{x+y}{x y}=3, \frac{x-y}{x y}=1\)

Solution:

Given

\(\frac{x+y}{x y}=3\) …(1)

\(\frac{x-y}{x y}=1\)   ….(2)

From equation (1) \(\frac{x}{x y}+\frac{y}{x y}=3\)

\(or, \frac{1}{y}+\frac{1}{x}=3
or, \frac{1}{y}=3-\frac{1}{x}
or, \quad \frac{1}{y}=\frac{3 x-1}{x}\)

Class 9 Mathematics West Bengal Board

or, (3x-1)y = x

or, \(y=\frac{x}{3 x-1}\) ….(3)

From equation (1) \(\frac{x}{x y}-\frac{y}{x y}=1\)

or, \(\frac{1}{y}-\frac{1}{x}=1\)  …..(4)

Putting the value \(y=\frac{x}{3 x-1}\) in equation (4)

or, \(\frac{1}{\frac{x}{3 x-1}}-\frac{1}{x}=1\)

or, \(\frac{3 x-1}{x}-\frac{1}{x}=1\)

or, \(\frac{3 x-1-1}{x}=1\)

or, 3x-2=x
or,3x-x=2
or,2x = 2

or, \(x=\frac{2}{2}\)

or, X = 1

Putting the value of x in equation (3),

or, \(y=\frac{1}{3 \times 1-1}\)

or, \(y=\frac{1}{3-1}\)

or, \(y=\frac{1}{2}\)

∴ x =1

\(y=\frac{1}{2}\)

From equation (1) L. H.S. = \(\frac{x+y}{x y}\)

= \(=\frac{1+\frac{1}{2}}{1 \times \frac{1}{2}}\)

\(\begin{aligned}
& \frac{2+1}{2} \\
= & \frac{1}{2} \\
= & \frac{3}{2} \times \frac{2}{1}
\end{aligned}\)

Class 9 Mathematics West Bengal Board

= 3
= R. H. S.

Again, from equation (2) L. H. S. = \(\frac{x-y}{x y}\)

\(\begin{aligned}
& =\frac{1-\frac{1}{2}}{1 \times \frac{1}{2}} \\
& =\frac{\frac{2-1}{2}}{\frac{1}{2}} \\
& =\frac{1}{2} \times \frac{2}{1}
\end{aligned}\)

= 1
= R. H. S.

4.  \(\frac{x+y}{x-y}=\frac{7}{3}, \quad x+y=\frac{7}{10}\)

Solution:

Given

\(\frac{x+y}{x-y}=\frac{7}{3}\)   ….(1)

\(x+y=\frac{7}{10}\) ……(2)

From equation (1) \(\frac{x+y}{x-y}=\frac{7}{3}\)

or, 7x-7y=3x+3y
or, 7x-3x=7y+ 3y
or, 4x = 10y

or, \(x=\frac{10 y}{4}\)

or, \(x=\frac{5 y}{2}\)  …..(3)

Putting the value of y in equation (2),

\(or,\frac{5 y}{2}+y=\frac{7}{10}
or,\quad\frac{5 y+2 y}{2}=\frac{7}{10}
or,\frac{7 y}{1}=\frac{7}{5}
or,\quad y=\frac{7}{5 \times 7}
or, \quad y=\frac{1}{5}\)

Class 9 Math Chapter 5 WBBSE

Putting the value of y in equation (2),

\(or, \quad x+\frac{1}{5}=\frac{7}{10}
or,\quad x=\frac{7}{10}-\frac{1}{5}
or,\quad x=\frac{7-2}{10}
or,\quad x=\frac{5}{10}
or,\quad x=\frac{1}{2}
therefore  x=\frac{1}{2}
y=\frac{1}{5}\)

 

From equation (1) L. H.S.  \(=\frac{x+y}{x-y}\)

= \(=\frac{\frac{1}{2}+\frac{1}{5}}{\frac{1}{2}-\frac{1}{5}}\)

= \(=\frac{\frac{7}{10}}{\frac{3}{10}}\)

= \(=\frac{7}{3}\)

= R. H. S.

Again, from equation (1) L. H. S. = x + y

\(\begin{aligned}
& =\frac{1}{2}+\frac{1}{5} \\
& =\frac{5+2}{10} \\
& =\frac{7}{10}
\end{aligned}\)

= R. H. S.

Question 5. Let us solve the following equations in two variables by substitution method:

1. 2(x-y) = 3, 5x + 8y = 14

Solution:

Given

2(x-y)=3 ….(1)

5x + 8y = 14  …..(2)

From equation (1) 2x-2y=3
or, 2x = 3 + 2y

or, \(x=\frac{3+2 y}{2}\)  ….(3)

Putting the value of x in equation (2),

\(\frac{5(3+2 y)}{2}+8 y=14\)

Class 9 Math Chapter 5 WBBSE

or, \(\frac{15+10 y+16 y}{2}=14\)

or, 15+26y=28
or, 26y=28-15
or, 26y = 13

\(or, \quad y=\frac{13}{26}
or, \quad y=\frac{1}{2}\)

Putting the value of y in equation (3),

\(x=\frac{3+2 \times \frac{1}{2}}{2}\)

 

or, \(x=\frac{3+1}{2}\)

or, \(x=\frac{4}{2}\)

or, x =2

∴ x =2 , y= 1/2

2. \(2 x+\frac{3}{y}=5,5 x-\frac{2}{y}=3\)

Solution:

\(2 x+\frac{3}{y}=5 \) …..(1)

\(5 x-\frac{2}{y}=3\)   …..(2)

Class 9 Math Chapter 5 WBBSE

From equation (1) \(2 x=5-\frac{3}{y}\)

or, \(2 x=\frac{5 y-3}{y}\)

or, \(x=\frac{5 y-3}{2 y}\) ….(3)

Putting the value of x in equation (2),

\(\frac{5(5 y-3)}{2 y}-\frac{2}{y}=3\)

 

or, \(\frac{25 y-15-4}{2 y}=3\)

or, 25y-19 = 6y
or,25y-6y 19
or,19y= 19

or, y = \(\frac{19}{19}\)

or, y = 1

Putting the value of y in equation (3),

\(x=\frac{5-3}{2}\)

 

or, \(x=\frac{5-3}{2}\)

or, \(x=\frac{2}{2}\)

or, x = 1

∴ x = , y = 1

3. \(\frac{x}{2}+\frac{y}{3}=1, \frac{x}{3}+\frac{y}{2}=1\)

Solution: \(\frac{x}{2}+\frac{y}{3}=1\) ….(1)

\(\frac{x}{3}+\frac{y}{2}=1\) ….(2)

 

From equation (1) \(\frac{x}{2}=1-\frac{y}{3}\)

or,\(\frac{x}{2}=\frac{3-y}{3}\)

or, 3x = 6-2y

or, \(x=\frac{6-2 y}{3}\) …(3)

Putting the value of y in equation (3),

\(\frac{\frac{6-2 y}{3}}{3}+\frac{y}{2}=1\)

Class 9 Math Chapter 5 WBBSE

or, \(\frac{6-2 y}{3} \times \frac{1}{3}+\frac{y}{2}=1\)

or, \(\frac{12-4 y+9 y}{18}=1\)

or, 12 + 5y = 18
or, 5y = 18-12

or, \(y=\frac{6}{5}\)

Putting the value of y in equation (3),

\(x=\frac{6-2 \times \frac{6}{5}}{3}\)

 

\(or, x=\frac{\frac{30-12}{5}}{3}
or, \quad x=\frac{18}{5} \times \frac{1}{3}
or, \quad x=\frac{6}{5}\)

 

∴ \(x=\frac{6}{5}\)

∴ \(y=\frac{6}{5}\)

4. \(\frac{x}{3}=\frac{y}{4}\), 7x-5y = 2

Solution:

Given

\(\frac{x}{3}=\frac{y}{4}\) ….(1)

7x-5y – 2 ….(2)

From equation(1) 4x = 3y

or, \(x=\frac{3 y}{4}\) …..(3)

Putting the value of x in equation. (2),

\(7 \times \frac{3 y}{4}-5 y=2\)

 

or, \(\frac{21 y-20 y}{4}=2\)

or, y = 8

Putting the value of y in equation (3),

\(x=\frac{3 \times 8}{4}\)

Class 9 Math Solution WBBSE In English

∴ x = 6, y = 8

5. \(\frac{2}{x}+\frac{5}{y}=1, \frac{3}{x}+\frac{2}{y}=\frac{19}{20}\)

Solution:

Given

\(\frac{2}{x}+\frac{5}{y}=1\) …(1)

\(\frac{3}{x}+\frac{2}{y}=\frac{19}{20}\)……..(2)

 

From equation (1) \(\frac{2}{x}=1-\frac{5}{y}\)

or, \(\frac{2}{x}=\frac{y-5}{y}\)

or, (y-5)x = 2y

or, \(x=\frac{2 y}{y-5}\) ….(3)

Putting the value of x in equation (2),

\(\frac{3}{\frac{2 y}{y-5}}+\frac{2}{y}=\frac{19}{20}\)

 

or, \(\frac{3(y-5)}{2 y}+\frac{2}{y}=\frac{19}{20}\)

or, \(\frac{3 y-15+4}{2 y}=\frac{19}{20}\)

or, \(\frac{3 y-11}{y}=\frac{19}{10}\)

or, 30y-110 = 19y
or,30y-19y=110
or,11y=110

or, \(y=\frac{110}{11}\)

or,y = 10

Putting the value of y in equation (3),

\(x=\frac{2 \times 10}{10-5}\)

Class 9 Math Solution WBBSE In English

or,\(x=\frac{20}{5}\)

or,X = 4

∴ X=4
y = 10

6. \(\frac{1}{3}\)(x − y) = \(\frac{1}{3}\) (y-1), \(\frac{1}{3}\)(4x-5y) = x – 7

Solution:

Given

\(\frac{1}{3}\)(x − y) = \(\frac{1}{3}\) (y-1) ….(1)

\(\frac{1}{3}\)(4x-5y) = x – 7 …..(2)

From equation (1) \(\frac{x-y}{3}=\frac{y-1}{4}\)

or, 4x-4y=3y-3
or, 4x=3y – 3+ 4y
or, 4x = 7y-3

or, \(x=\frac{7 y-3}{4}\)  ….(3)

Putting the value of x in equation (2),

\(\frac{1}{7}\left\{4 \frac{(7 y-3)}{4}-5 y\right\}=\frac{7 y-3}{4}-7\)

Class 9 Math Solution WBBSE In English

or, \(\frac{1}{7}(7 y-3-5 y)=\frac{7 y-3-28}{4}\)

or, \(\frac{2 y-3}{7}=\frac{7 y-31}{4}\)

or, 49y-217 = 8y-12
or, 49y-8y= -12+217
or, 41y=205

or, \(y=\frac{205}{41}\)

or, y = 5

Putting the value of y in equation (3),

\(x=\frac{7 \times 5-3}{4}\)

 

\(or, x=\frac{35-3}{4} or, x=\frac{32}{4}\)

 

or, x =8

∴ x = 8, y =5

7. \(\frac{x}{14}+\frac{y}{18}=1, \frac{x+y}{2}+\frac{3 x-5 y}{4}=2\)

Solution:

\(\frac{x}{14}+\frac{y}{18}=1\) ….(1)

\(\frac{x+y}{2}+\frac{3 x-5 y}{4}=2\) ….(2)

Class 9 Math Solution WBBSE In English

From equation, (1) \(\frac{x}{14}+\frac{y}{18}=1\)

or, \(\frac{9 x+7 y}{126}=1[/latex

or, 9x + 7y = 126
or, 9x=126-7y

or, [latex]x=\frac{126-7 y}{9}\)   ….(3)

From equation (1) \(\frac{x+y}{2}+\frac{3 x-5 y}{4}=2\)

or, \(\frac{2 x+2 y+3 x-5 y}{4}=2\)

or, 5x – 3y = 8 (4)

From equation (4) \(x=\frac{126-7 y}{9}\)

\(\frac{5(126-7 y)}{9}-3 y=8\)

 

or, \(\frac{630-35 y-27 y}{9}=8\)

or, – 62y + 630 = 72
or,-62y=72-630
or, -62y=-558
or, 62y=558

or, \(y=\frac{558}{62}\)

or, y=9

Putting the value of y in equation (3),

\(x=\frac{126-7 \times 9}{9}\)

Class 9 Math Solution WBBSE In English

\(or, \quad x=\frac{126-63}{9}
or, x=\frac{63}{9}
or, \quad x=7\)

∴ x = 7, y=9

8. p (x+y)= q(xy) =2pq

Solution:

Given

P(x+y)=2pq ….(1)

q (x – y) = 2pq…..(2)

From equation (1) p (x+y)=2pq

or, \(x+y=\frac{2 p q}{p}\)

or, x + y = 2q
or, x = 2q-y ….(3)

Putting the value of x in equation(2)
q(2q – y-y) = 2pq

or, \(2 q-2 y=\frac{2 p q}{q}\)

or,-2y=2p-2q

or, \(y=\frac{2(p-q)}{-2}\)

or,y=q-p

Putting the value of y in equation (3),
x = 2q – (q.-p)
or, x=2q-q+p
or, x=p+q
=x=p+q
y=q-p

 

Leave a Comment