Class IX Maths Solutions WBBSEΒ Chapter 5 Linear Simultaneous Equations Exercise 5.6
Let us solve the following linear equations in two variables by applying the cross-multiplication method :
Question 1. 8x+5y= 11, 3x β 4y = 10
Solution:
Given
8x+5y = 11 β¦(1)
3x-4y = 10β¦..(2)
From equation (1) 8x+5y-11=0
From equation (2) 3x-4y-10=0
or,\(\frac{x}{5 \times(-10)-(-11) \times(-4)}=\frac{y}{(-11) \times 3-8(-10)}=\frac{1}{8(-4)-5 \times 3}\)
or,\(\frac{x}{-50-44}=\frac{y}{-33+80}=\frac{1}{-32-15}\)
or,\(\frac{x}{-94}=\frac{y}{47}=\frac{1}{-47}\)
β΄ \(\frac{x}{-94}=\frac{1}{-47} \text { and } \frac{y}{47}=\frac{1}{-47}\)
or,\(x=\frac{-94}{-47} \text { and } y=\frac{47}{-47}\)
or, X = 2Β and y = -1
β΄ y=-1 , x = 2
Read and Learn More WBBSE Solutions For Class 9 Maths
Question 2. 3x4y = 1, 4x = 3y+6
Solution:
Given
3x-4y = 1 β¦.(1)
4x = 3y+ 6 β¦(2)
From equation (1) 3x-4y-1-0
From equation (2) 4x-3y-6=0
or, \(\frac{x}{(-4) \times(-6)-(-1)(-3)}=\frac{y}{(-1) \times 4-3(-6)}=\frac{1}{3(-3)-(-4) \times 4}\)
or, \(Β \quad \frac{x}{24-3}=\frac{y}{-4+18}=\frac{1}{-9+16}\)
or, \(\quad \frac{x}{21}=\frac{y}{14}=\frac{1}{7}\)
β΄Β \(\frac{x}{21}=\frac{1}{7} \text { and } \frac{y}{14}=\frac{1}{7}\)
or, \(x=\frac{21}{7} \text { and } y=\frac{14}{7}\)
or, x=3 and y = 2
β΄ X = 3
y = 2
Class IX Maths Solutions WBBSE
Question 3. 5x + 3y = 11, 2x-7y = β 12
Solution:
Given
5x + 3y = 11β¦.(1)
2x-7y=-12β¦.(2)
From equation (1) 5x + 3y-11=0
From equation (2) 2x-7y+12=0.
β΄ \(\frac{x}{3 \times 12-(-11) \times(-7)}=\frac{y}{-11 \times 2-5 \times 12}=\frac{1}{5 \times(-7)-3 \times 2}\)
or, \(\frac{x}{36-77}=\frac{y}{-22-60}=\frac{1}{-35-6}\)
or, \(\frac{x}{-41}=\frac{y}{-82}=\frac{1}{-41}\)
or, \(\frac{x}{41}=\frac{y}{82}=\frac{1}{41}\)
β΄ \(\frac{x}{41}=\frac{1}{41} \text { and } \frac{y}{82}=\frac{1}{41}\)
or, \(x=\frac{41}{41} \text { and } y=\frac{82}{41}\)
β΄ x= 1 and y = 2
Question 4. 7x-3y-31=0, 9x-5y-41=0
Solution:
Given
7x-3y31= 0 β¦.(1)
9x-5y-41=0 β¦..(2)
or, \(\frac{x}{(-3) \times(-41)-(-31)(-5)}=\frac{y}{(-31) \times 9-7 \times(-41)}=\frac{1}{7 \times(-5)-(-3) \times 9}\)
or, \(\frac{x}{123-155}=\frac{y}{-279+287}=\frac{1}{-35+27}\)
or, \(\frac{x}{-32}=\frac{y}{8}=\frac{1}{-8}\)
β΄Β \(\frac{x}{-32}=\frac{1}{-8} \text { and } \frac{y}{8}=\frac{1}{-8}\)
or,\(x=\frac{-32}{-8} \text { and } y=\frac{8}{-8}\)
β΄ X = 4 and y = -1
Class IX Maths Solutions WBBSE
Question 5. \(\frac{x}{6}-\frac{y}{3}=\frac{x}{12}-\frac{2 y}{3}=4\)
Solution:
Given
\(\frac{x}{6}-\frac{y}{3}=4\) β¦(1)
\(\frac{x}{12}-\frac{2 y}{3}=4\) β¦(2)
Β
From equation (1) \(\frac{x}{6}-\frac{y}{3}=4\)
or, \(\frac{x-2 y}{6}=4\)
or, x-2y = 24β¦(3)
From equation (2) \(\frac{x}{12}-\frac{2 y}{3}=4\)
or, \(\frac{x-8 y}{12}=4\)
or,X-8y = 48 β¦.(3)
From equation (1) x-2y-24=0
From equation (4) x-8y-48=0
β΄ \(\frac{x}{(-2) \times(-48)-(-24)(-8)}=\frac{y}{(-24) \times 1-1 \times(-48)}=\frac{1}{1 \times(-8)-(-2) \times 1}\)
or,\(\frac{x}{96-192}=\frac{y}{-24+48}=\frac{1}{-8+2}\)
or, \(\frac{x}{-96}=\frac{y}{24}=\frac{1}{-6}\)
β΄ \(\frac{x}{-96}=\frac{1}{-6} \text { and } \frac{y}{24}=\frac{1}{-6}\)
or, \(x=\frac{-96}{-6} \text { and } y=\frac{24}{-6}\)
or, x =16, y= -4
β΄ x= 6
y = -4
Question 6. \(\frac{x}{5}+\frac{y}{3}=\frac{x}{4}-\frac{y}{3}-\frac{3}{20}=0\)
Solution:
Given
Β
\(\frac{x}{5}+\frac{y}{3}=0\) β¦(1)
\(\frac{x}{4}-\frac{y}{3}-\frac{3}{20}=0\)β¦(2)
Class IX Maths Solutions WBBSE
From equation (1) \(\frac{x}{5}+\frac{y}{3}=0\)
or, \(\frac{3 x+5 y}{15}=0\)
or, 3x+5y =0 β¦.(3)
From equation (2) \(\frac{x}{4}-\frac{y}{3}-\frac{3}{20}=0\)
or, \(\frac{15 x-20 y-9}{60}=0\)
or, 15x-20y -9 =0 β¦(4)
From equation (3) 3x+5y+0=0
From equation (4) 15x-20y-9=0
β΄ \(\frac{x}{5 \times(-9)-0 \times(-20)}=\frac{y}{0 \times 15-3 \times(-9)}=\frac{1}{3 \times(-20)-5 \times 15}\)
or, \(\frac{x}{-45-0}=\frac{y}{0+27}=\frac{1}{-60-75}\)
or,\(\frac{x}{-45}=\frac{y}{27}=\frac{1}{-13}\)
β΄\( \frac{x}{-45}=\frac{1}{-135} \text { and } \frac{y}{27}=\frac{1}{-135}\)
or,\(x=\frac{-45}{-135} \text { and } y=\frac{27}{-135}\)
or,\(x=\frac{1}{3} \text { and } y=-\frac{1}{5}\)
β΄ \(x=\frac{1}{3} \text { and } y=-\frac{1}{5}\)
Question 7. \(\frac{x+2}{7}+\frac{y-x}{4}=2 x-8, \quad \frac{2 y-3 x}{3}+2 y=3 x+4\)
Solution:
Given
\(\frac{x+2}{7}+\frac{y-x}{4}=2 x-8\) β¦.(1)
\(\frac{2 y-3 x}{3}+2 y=3 x+4\) β¦.(2)
Class IX Maths Solutions WBBSE
From equation(1) \(\frac{x+2}{7}+\frac{y-x}{4}=2 x-8\)
or, \(\frac{4 x+8+7 y-7 x}{28}=2 x-8\)
or, \(\frac{-3 x+7 y+8}{28}=2 x-8\)
or,56-224= -3x + 7y+8
or,56x+3x-7y = 8 +224
or,59x-7y = 232β¦(3)
From equation (2) \( \frac{2 y-3 x}{3}+2 y=3 x+4 \)
Or, \( \frac{2 y-3 x+6 y}{3}=3 x+4 \)
or, 9x+12=8y-3x
or, 9x + 3x β 8y = β 12
or,12x-8y=-12
or,3x-2y=-3 β¦.(4)
From equation (3) 59x-7y-232 = 0
From equation (4) 3x-2y+3-0
Class 9 Mathematics West Bengal Board
or, \( \frac{x}{-21-464}=\frac{y}{-696-177}=\frac{1}{-118+21} \)
or, \( \frac{x}{-485}=\frac{y}{-873}=\frac{1}{-97} \)
\( \frac{x}{-485}=\frac{1}{-97} \text { and } \frac{y}{-873}=\frac{1}{-97} \)or, \( x=\frac{-485}{-97} \text { and } y=\frac{-873}{-97} \)
or, x = 5 and y = 9
x = 5,y=9
Question 8. x+5y = 36, \( \frac{x+y}{x-y}=\frac{5}{3} \)
Solution:
Given
x+5y = 36 β¦.(1)
\( \frac{x+y}{x-y}=\frac{5}{3} \) β¦(2)
Β
or, 5x-5y=3x+3y
or, 5x-3x-5y-3y=0
or, 2x β 8y = 0
or,X-4y=0 β¦(4)
From equation (1) x+5y-36=0
From equation (3) x-4y+0=0
Β
or, \( \frac{x}{0-144}=\frac{y}{-36-0}=\frac{1}{-4-5} \)
or, \( \frac{x}{-144}=\frac{y}{-36}=\frac{1}{-9} \)
or, \( \frac{x}{144}=\frac{y}{36}=\frac{1}{9} \)
\( \frac{x}{144}=\frac{1}{9} \text { and } \frac{y}{36}=\frac{1}{9} \)Class 9 Mathematics West Bengal Board
or, \( x=\frac{144}{9} \text { and } y=\frac{36}{9} \)
or,Β x=16 and y = 4
Question 9. 13x12y+15=0, 8x-7y = 0
Solution:
Given
13x-12y+15=0 β¦(1)
8x-7y+0=0β¦(2)
\( \frac{x}{-12 \times 0-15 \times(-7)}=\frac{y}{15 \times 8-13 \times 0}=\frac{1}{13 \times(-7)-(-12) \times 8} \)Β
Or, \( \frac{x}{0+105}=\frac{y}{120-0}=\frac{1}{-91+96} \)
Or, \( \frac{x}{105}=\frac{y}{120}=\frac{1}{5} \)
\( \frac{x}{105}=\frac{1}{5} \text { and } \frac{y}{120}=\frac{1}{5} \) \( x=\frac{105}{5} \text { and } y=\frac{120}{5} \)Or, x=21 and y = 24
x = 21,
y = 24
Question 10. x + y = 2b, x β y = 2a
Solution:
Given
x + y = 2b β¦(1)
x β y = 2a β¦(2)
From equation (1) x+y-2b=0
From equation (2) xy- 2a =0
Class 9 Mathematics West Bengal Board
Or, \( \frac{x}{-2 a-2 b}=\frac{y}{-2 b+2 a}=\frac{1}{-1-1} \)
Or, \( \frac{x}{-2(a+b)}=\frac{y}{-2(b-a)}=\frac{1}{-2} \)
Or, \( \frac{x}{2(a+b)}=\frac{y}{2(b-a)}=\frac{1}{2} \)
\( \frac{x}{2(a-b)}=\frac{1}{2} \text { and } \frac{y}{2(b-a)}=\frac{1}{2} \)Β
Or,\( x=\frac{2(a-b)}{2} \text { and } y=\frac{2(b-a}{2} \)
X= a-b, y= b-a
Question 11. x β y = 2a, ax + by = a2 + b2
Solution:
Given
x β y = 2a β¦(1)
ax + by = a2 + b2 β¦(2)
From equation (1) x-y-2a=0
From equation (2) ax + by-(a2+b2)=0
Class 9 Maths WB Board
Or, \( \frac{x}{a^2+b^2+2 a b}=\frac{y}{-2 a^2+a^2+b^2}=\frac{1}{b+a} \)
Or, \( \frac{x}{(a+b)^2}=\frac{y}{b^2-a^2}=\frac{1}{b+a} \)
Or, \( \frac{x}{(a+b)(a+b)}=\frac{y}{(b+a)(b-a)}=\frac{1}{b+a} \)
\( \frac{x}{(a+b)(a+b)}=\frac{1}{b+a} \text { and } \frac{y}{(b+a)(b-a)}=\frac{1}{b+a} \)Or, \( x=\frac{(a+b)(a+b)}{(a+b)} \text { and } y=\frac{(b+a)(b-a)}{(b+a)} \)
or, x = a + b and y = b-a
x = a + b
y = b-a
Question 12. \( \frac{x}{a}+\frac{y}{b}=2 \), ax-by=a2-b2
Solution:
Given
\( \frac{x}{a}+\frac{y}{b}=2 \) β¦.(1)
ax-by=a2-b2 β¦(2)
From equation (1) \( \frac{x}{a}+\frac{y}{b}=2 \)
Or, \( \frac{b x+a y}{a b}=2 \)
Or, bx+ay = 2ab β¦.(3)
From equation (3) bx+ay-2ab = 0
From equation (4) ax + by β (a2 + b2) = 0
Β
Or, \( \frac{x}{a b^2-a^3-2 a b^2}=\frac{y}{-2 a^2 b-b^3+a^2 b}=\frac{1}{-b^2-a^2} \)
Or, \( \frac{x}{-a^3-a b^2}=\frac{y}{-a^2 b-b^3}=\frac{1}{-a^2-b^2} \)
Or, \( \frac{x}{-a\left(a^2+b^2\right)}=\frac{y}{-b\left(a^2+b^2\right)}=\frac{1}{-\left(a^2+b^2\right)} \)
Or,\( \frac{x}{a\left(a^2+b^2\right)}=\frac{y}{b\left(a^2+b^2\right)}=\frac{1}{\left(a^2+b^2\right)} \)
\( \frac{x}{a\left(a^2+b^2\right)}=\frac{1}{a^2+b^2} \text { and } \frac{y}{b\left(a^2+b^2\right)}=\frac{1}{a^2+b^2} \)Class 9 Maths WB Board
Or, \( x=\frac{a\left(a^2+b^2\right)}{\left(a^2+b^2\right)} \text { and } y=\frac{b\left(a^2+b^2\right)}{\left(a^2+b^2\right)} \)
X=4
Y= b
Question 13. ax + by = 1, \( b x+a y=\frac{2 a b}{a^2+b^2} \)
Solution: ax + by = 1 β¦.(1)
\( b x+a y=\frac{2 a b}{a^2+b^2} \)β¦..(2)
Β
From equation (1) ax + by β 1 = 0
From equation (2) b(a2+ b2)x + a(a2+ b2)y β 2ab = 0
Class 9 Maths WB Board
Or,\( \frac{x}{-2 a b^2+a^3+a b^2}=\frac{y}{-a^2 b-b^3+2 a^2 b}=\frac{1}{a^4+a^2 b^2-a^2 b^2-b^4} \)
Or,\( \frac{x}{a\left(a^2-b^2\right)}=\frac{y}{b\left(a^2-b^2\right)}=\frac{1}{\left(a^2+b^2\right)\left(a^2-b^2\right)} \)
Or,\( \frac{x}{a\left(a^2-b^2\right)}=\frac{y}{b\left(a^2-b^2\right)}=\frac{1}{\left(a^2+b^2\right)\left(a^2-b^2\right)} \)
\( \frac{x}{a\left(a^2-b^2\right)}=\frac{1}{\left(a^2+b^2\right)\left(a^2-b^2\right)} \text { and } \frac{y}{b\left(a^2-b^2\right)}=\frac{1}{\left(a^2+b^2\right)\left(a^2-b^2\right)} \)Β
Or, \( x=\frac{a\left(a^2-b^2\right)}{\left(a^2+b^2\right)\left(a^2-b^2\right)} \text { and } y=\frac{b\left(a^2-b^2\right)}{\left(a^2+b^2\right)\left(a^2-b^2\right)} \)
Or,\( x=\frac{a}{a^2+b^2} \text { and } y=\frac{b}{a^2+b^2} \)
\( \begin{aligned}& therefore x=\frac{a}{a^2+b^2} \\
& y=\frac{b}{a^2+b^2}
\end{aligned} \)
Β
Β